
EncTEX

The Extension of TEX
For Input Re-encoding

Petr Oľsák

This text documents the version Feb. 2003

This package is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This package is available on

ftp://math.feld.cvut.cz/pub/olsak/enctex/.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

c© 1997, 2002, 2003 RNDr. Petr Oľsák

TEX is trademark of the American Mathematical Society.

The author of the TEX is professor Donald Knuth. The TEX is a free software with the specific license.
See the documentation of TEX.

The original version of the encTEX documentation (in Czech language) is in encdoc.tex file.
Původńı česká dokumentace je v souboru encdoc.tex.

1. The basic information
The encTEX package is a little extension of TEX. You can install it from source files of TEX by changing

the tex.ch file in your distribution. The patch to tex.ch file for web2c distribution is supported.
The encTEX is backward compatible with the original TEX. It adds ten new primitives by which you can

set or read the conversion tables used by input processor of TEX or used during output to the terminal, log
and \write files. These tables are stored to the format files thus, they are reinitialized to the same state as
in time of \dump command when the format file is read.

This extension is fully tested and it passes the TRIP test with only two differences:

• The banner is different
• The number of “multiletter control sequences” is greater by ten.

1.1. The installation

For install instructions of encTEX – read the INSTALL.eng file.

1.2. Versions

I released the first version of encTEX in 1997. This version was able to do the byte to byte conversion
only by xord and xchr vector and to assign the characters as “printable” (the \xordcode, \xchrcode and
\xprncode primitives).

The TCX tables were renoved in 1998. These tables do the same work as encTEX 1997 thus I closed my
support of encTEX. The problem with the missing support of UTF-8 encoding on input processor caused the
reinterpretation of my old decision: I implemented the UTF-8 support to the encTEX in December 2002 and
I propagate encTEX again.

The current version is called “Feb. 2003” and it adds seven new primitives: \mubyte, \endmubyte,
\mubytein, \mubyteout, \mubytelog, \specialout and \noconvert. They give a possibility to set the
conversion from UTF-8 encoded files.

Of course, the new version is backward compatible with the old one from 1997. I don’t plan any new big
changes. If a little change will be done then the backward compatibility with the previous version of encTEX
is guaranteed by me.

1.3. EncTEX in web2c distribution, TCX tables

If your web2c distribution implements encTEX then you can initialize it by the -enc option in command
line. You have to use this option during iniTEX because encTEX stores its primitives and its data to the
format file. When the format is used, the encTEX is initialized from format file automatically and you need
not use the -enc option again. If you are using a format without encTEX initialized in it and you write -enc
option then the warning is printed and this option is ignored.

The TCX tables (-translate-file option) are working with the same xord and xchr vector as encTEX
in web2c distribution. This implies the following little conflicts: If encTEX is used together with TCX table
then TCX table may re-write the initial values of \xordcode, \xchrcode and \xprncode. These initial
values are documented in section 2.2. If these values are stored in format by encTEX and TCX table is used
together with such format then the values from format can be re-written by TCX table too. On the other
hand, you can use the \xordcode, \xchrcode and \xprncode primitives for reading or saving of these values
after TCX table initialization without problems.

1.4. The TEX license

The encTEX adds the new primitives into TEX so, we cannot call the resulting program by name TEX.
On the other hand D. Knuth assumed that TEX internals are filtered always from system dependences. This
was a reason why he implemented xord/xchr vectors in TEX. D. Knuth assumed that the parameters of filter
from system dependences is set at source code level. EncTEX only moves this setting from source code level
to the runtime level. This is nothing new: the TEX memory parameters are possible to set at runtime in
modern TEX distributions too. You can set the conversion tables depend on your system. Then you can say
\let\xordcode=\undefined etc. (the same for other encTEX primitives) and you can do \dump. The format

3

has the conversion tables stored by the system specifications and the user cannot do any more changes. The
using of this format acts the same as the using of the original TEX.

I think that the second line on the terminal and log file is sufficient information about the fact that the
program is a modified version of TEX. I think that if the UTF-8 encoding will be used more common then
there is no another way than to modify the input processor of TEX otherwise the 8bit TEX will dead in short
time.

It is important to say that encTEX has the same default behavior as the original TEX if the new primitives
are never used.

IMHO, the new web2c TEX is not exactly the TEX too because you can change its behavior by writing %&
at the first line of the document. This feature is not documented in Computers & Typesetting series.

2. The byte per byte conversion

2.1. The xord and xchr vectors

All text inputs into TEX are mapped by xord vector in input preprocessor (the eyes in TEXbook termi-
nology). If the character has the code x in your system, the same character has the code y = xord[x] in
TEX.

All text outputs from TEX to terminal, log file and files managed by \write primitive are filtered by xchr
vector and by “printability” feature of the character. If the character with code y is not “printable”, then it
outputs by ^^code notation (documented in TEXbook, page 45). If the character with code y is “printable”
then the output code of this character on terminal and text files is z = xchr[y].

2.2. The new primitives with the access to the xord and xchr vectors

The encTEX extension introduces three new primitives with the same syntax as \lccode:

• \xordcode i ... is xord[i]
• \xchrcode i ... is xchr[i]
• the character with the code i is “printable” (not ^notation on terminal and the log is used) iff

(\xprncode i > 0) or (i ∈ {32, ..., 126}).

All setting to \xordcode, \xchrcode and \xprncode are possible in 0...255 range and are global every
time. It means that the setting inside group are global and it is irrelevant if you write \global prefix or you
do not.

The initial values at iniTEX state of the mentioned vectors are:

• \xordcode i = i for i ∈ {128...255},
• \xchrcode i = i for i ∈ {128...255},
• \xprncode i = 0 for i ∈ {0...31, 127...255},
• \xprncode i = 1 for i ∈ {32...126}.

The \xordcode i and \xchrcode i for i ∈ {0...127} are system dependent, but on systems with ASCII
encoding holds: \xordcode i = i, \xchrcode i = i.

3. The multi-byte conversion

Since version Dec 2002, the encTEX is able to convert more bytes to one byte or control sequence on input
processor level. This “one byte” is converted back to the original “more bytes” when \write is processed
or TEX outputs to the terminal or log file. The main reason of this extension of TEX is to serve to work
with the UTF-8 encoded input files: we need to assign the \catcodes, \uccodes etc. to the letters in our
alphabet but some letters are encoded in two bytes in UTF-8. The encTEX is able to map other codes from
UTF-8 to control sequences thus, the number of UTF-8 codes from input file examined by TEX is unlimited.

There are five new primitives to manage the conversion: \mubytein, \mubyteout, \mubytelog, \mubyte,
\endmubyte. The \mubytein, \mubyteout and \mubytelog are integer registers with zero value by default:

4

it means that no conversion is processed even if the conversion table (created by \mubyte, \endmubyte)
is non empty. If \mubytein is positive then the conversion on input processor level is performed by the
conversion table. If \mubyteout is positive then the conversion for output to the \write files is activated
by the same conversion table. If \mubytelog is positive then the output conversion is activated for log file
and terminal output.

The conversion table is empty by default and you can add the new line into this table by the couple of
\mubyte, \endmubyte primitives:

\mubyte 〈first token〉〈one optional space〉〈optional prefix 〉〈byte sequence〉\endmubyte

Each 〈byte sequence〉 will be converted to the 〈first token〉 at input processor level. There are two possi-
bilities for 〈first token〉: it may be a character or a control sequence. If the 〈first token〉 is a character then
the catcode of it is ignored and the 〈first token〉 is interpreted as a 〈byte〉. This 〈byte〉 is converted back to
the 〈byte sequence〉 in \write files, log file and terminal.

If the 〈first token〉 is a control sequence then the 〈byte sequence〉 will be converted to this control sequence
of the “one token” form at input processor level. It means that the token processor never changes this
control sequence. The token processor stays in middle line state after this control sequence is scanned. If
\mubyteout<2 then the output to the \write files is not converted back to the 〈byte sequence〉 and the
control sequence is expanded as usual. If \mubyteout>=2 then the control sequence declared by \mubyte
is converted back to the 〈byte sequence〉 in \write parameters. This works only if the control sequence
is not expanded. It means that the control sequence have to be non expandable or it have to be marked
by \noexpand. If \mubyteout>=3 then encTEX suppresses the expansion of control sequences declared by
\mubyte automatically. See section 3.7 for more details.

The control sequences are never converted back to 〈byte sequence〉 in log file and on the terminal output.
The syntax and the meaning of 〈optional prefix 〉 will be explained in section 3.4.

3.1. The conversion table manipulation

The data are stored into conversion table as a global assignment. On the other hand the assignment to
\mubytein, \mubyteout and \mubytelog registers are local as usually.

The \mubyte, \endmubyte primitives work very similar as a well known \csname, \endcsname pair. The
difference is that the 〈first token〉 is not expanded and that this token can be followed by 〈one optional space〉
(after expansion). The 〈byte sequence〉 is scanned with the full expansion. If the other non expandable control
sequence than \endmubyte occurs during this process then the error message is printed:

! Missing \endmubyte inserted.
\begtt

The "\mubyte" is not performed on the expand processor level: it is a
assign primitive. If you write

\begtt
\edef\a{\mubyte X ABC\endmubyte}

then the macro \a includes the \mubyte X ABC\endmubyte tokens.
Examples:

\mubyte ^^c1 ^^c3^^81\endmubyte % \’A
\mubyte ^^e1 ^^c3^^a1\endmubyte % \’a
% etc. -- the UTF8 implementation

\mubyte \endash ^^c4^^f6\endmubyte % the mapping to the control sequence
\mubyte \integral INT\endmubyte % the illustrative example, see below

\mubytein=1 \mubyteout=1 % conversions are activated here

\def\endash {--} % this is good definition for \write files too

5

\def\integral {\ifmmode \int\else \int\fi}

We have written more spaces (or tabs) in 〈one optional space〉 in this example because these characters
have the catcode of the space and the token processor converts them to right 〈one optional space〉.

The word “INTEGRAL” is converted to the token \integral followed by the letters “EGRAL” if the example
code is used. The text “INT something” is converted to the token \integral followed by space and the
word “something”. You can write the following constructions: \defINT{something}, \let INT=\foo, etc.
After \show INT we get:

> \integral=macro:
->\ifmmode \int \else $\int $\fi .
l.18 \show INT

and \string INT expands to the text: \integral.
Assume the INT declaration from the previous example and assume that you write \INT. What happens?

Strictly speaking, the empty control sequence (\csname\endcsname) followed by \integral control sequence
would be the output from the token processor. But there is an exception in encTEX because to avoid the
confusion with the empty control sequences. The \INT produces only the control sequence \integral, the
backslash is ignored in this situation. The token processor stays in middle state after \INT is scanned, the
letter can follow immediately.

3.2. The features of the conversion process

The input is converted immediately after \mubytein is set to the positive value; it means the conversion
may start at the same line where the \mubytein setting occurs.

The 〈byte sequence〉 is converted only if the whole 〈byte sequence〉 is included in the one line. The
\endlinechar character can be the last part of the 〈byte sequence〉.

The sequence ^^c3^^81 is not converted to the letter Á even if the code from the example was used. The
reason is that the ^^ conversion is done in token processor after the \mubyte conversion.

The \xordcode conversion is performed before \mubyte conversion in input side and the \xchrcode
conversion is done after \mubyte conversion during output to the files or to the terminal. The following
diagram shows the sequence of the conversions:

input text -> \xordcode -> \endlinechar appended ->
\mubyte -> token processor -> expand processor ...

\write argument -> expand processor -> \mubyte -> \xchrcode -> output

The 〈byte sequence〉 is not converted to the ^^ form during output to the file even if the \xprncode of the
bytes from 〈byte sequence〉 is zero. The 〈byte sequence〉 is not converted again even if there exist a character
in it which is normally converted by another rule in conversion table.

Let exist two or more 〈byte sequences〉 in the conversion table which are equal or which have the same
begin part and one sequence is a subsequence of the second. Then the conversion in input processor is done
by maximal possible 〈byte sequence〉. This feature was implemented in version Feb. 2003. Example:

\mubyte X A\endmubyte
\mubyte Y ABC\endmubyte
\mubyte \foo ABCD\endmubyte

The letter A is normally converted to X in this example, but if the BC letters immediately follow then
ABC is converted to Y with the exception ABCD which is converted to \foo.

The order of \mubyte settings in this example has no significance.
If the same 〈byte sequences〉 are used by \mubyte records then the last one has a precedence and the

previous records are cleared.

3.3. The conversion to log file and to the terminal

The output to terminal and to log file is not converted if \mubytelog is zero. If the \xprncode of the
character is zero then the character is printed in ^^A or ^^bc form. If the \mubytelog is positive then

6

the characters stored in conversion table are converted to the 〈byte sequence〉 and the bytes from these
〈byte sequence〉 are never converted to ^^ form. On the other hand, the control sequences keep unchanged
in log and in terminal unless the \mubytelog is positive.

The conversion is switched on or off by \mubytelog value for both: terminal and log file. You cannot
separate these outputs. It means that (for example) the conversion to log and no conversion to terminal is
not possible.

There exists a special part of terminal and log output: if the complete line from input is reprinted (for
example when the context of an error is shown). We call this situation as “line-reprinting” for the purpose
of the following text.

If the \mubytein is zero then line-reprinting works as usual in standard TEX. If \mubytein is positive and
\mubytelog is zero then line-reprinting includes the output from the input processor of encTEX. It means
that control sequences generated by input processor can shown here unless they don’t actually present in the
input line. If both \mubytein and \mubytlog are positive then line-reprinting works without any multi-byte
conversion, only xord is used immediately followed by xchr. No ^^A form is used in this situation. Note that
the error messages can be somewhat peculiar when \mubytein and \mubytlog are positive:

\mubyte \cmd ABC\endmubyte \let\cmd=\undefined
\mubytein=1 \mubytelog=1
This is test of ABC and another text.

We get the following message:

! Undefined control sequence.
l.3 This is test of ABC

and another text.
?

The \show ABC can say you more information:

> \cmd=undefined.
l.3 \show ABC

3.4. Clearing records from the conversion table

There exists only the chance to clear all records which begin with the same first byte of 〈byte sequence〉.
This is done by the command \mubyte 〈char〉 〈char〉\endmubyte. For example

\mubyte A A\endmubyte

clears all 〈byte sequences〉 from conversion table which begin with the character A. The following code clears
all conversion table:

{\catcode‘\^^@=12
\gdef\clearmubytes{\bgroup \count255=1

\loop \uccode‘X=\count255
\uppercase{\mubyte XX\endmubyte}%
\advance\count255 by1
\ifnum\count255<256 \repeat

\mubyte ^^@^^@\endmubyte
\egroup}

}
\clearmubytes

3.5. Input and output sides of the conversion table

The conversion table consists from two independent parts: input side used by input processor and output
side used during \write or printing to the log and terminal. You can save the record only to one of this parts
by using the nonempty 〈optional prefix 〉. If the 〈optional prefix 〉 is empty then the same record is stored

7

twice: into input and output sides. If 〈optional prefix 〉 is a token of catcode 8 (usually the _ character) then
the record is stored only into input side . If 〈optional prefix 〉 is a pair of tokens catcode 8 (usually __) then
the record is stored only into output side.

If the optional prefix has a form of __ then the following 〈byte sequence〉 can be empty. EncTEX removes
the record corresponding to the 〈first token〉 from output side in such situation.

The macro code for clearing the conversion table from previous section clears all records from input side
but only the records concerned to the 〈first token〉 in “one byte form” from output side. You can remove
the record concerned to control sequence from output side only by \mubyte \foo __\endmubyte.

3.6. Inserted control sequences

If the 〈first token〉 is the control sequence and the 〈optional prefix 〉 is one token of catcode 6 (usually the
character) followed by 〈number〉 then the 〈number〉 bytes are kept by input processor (it means they are
no converted again) and the declared control sequence is inserted before 〈byte sequence〉. The example:

\def\abc{ABC}
\mubyte X BC\endmubyte \mubytein=1
\mubyte \foo #3 \abc\endmubyte ABC is converted to \foo ABC
\mubyte \foo #1 \abc\endmubyte ABC is converted to \foo AX

The 〈number〉 has the same syntax as 〈number〉 from TEXbook. It means that “one optional space” can
work as a separator of digit(s). See the previous example.

If 〈number〉 is zero then the control sequence is inserted and the whole 〈byte sequence〉 is unchanged. This
has the same effect as if the 〈number〉 equals to the length of the 〈byte sequence〉.

The 〈number〉 is accepted only in the range 0 to 50. The negative 〈numbers〉 are silently interpreted as
zero and the numbers greater than 50 mean that the rest of the converted line will be unchanged by input
processor.

More practical example follows. Note, that the 〈number〉 is greater than the length of the 〈byte sequence〉
here.

\mubyte \warntwobytes #2^^c3\endmubyte
\mubyte \warntwobytes #2^^c4\endmubyte
\mubyte \warntwobytes #2^^c5\endmubyte
% atd...
\def\warntwobytes #1#2{\message{WARNING: the UTF8 code:

\noconvert#1\noconvert#2 is not defined i my macros.}}

The new primitive \noconvert is used in this example (see chapter 5). The similar code is used in the
file utf8unkn.tex.

3.7. The virtual mark of line begin

If \mubytein>0 and if the first byte in 〈byte sequence〉 is equal to \endlinechar (it means 〈byte sequence〉
has a format 〈endlinechar〉〈rest〉) then input processor checks the matching of the 〈rest〉 with the begin of
every line. If it matches then the given conversion is done. The example:

\bgroup \uccode‘X=\endlinechar \uppercase{\gdef\echar{X}}\egroup
\mubyte \fooB \echar ABC\endmubyte % ABC matches at begin of line
\mubyte \fooE ABC\echar \endmubyte % ABC matches at end of line
\mubyte \fooW \spce\space ABC\space \endmubyte

% ABC matches as a word with spaces before and after
\mubyte \foo #\echar XYZ\endmubyte %

% if XYZ is at begin of line the \foo is inserted before them

3.8. The suppression of the expansion in write parameters

If you need to convert the control sequences back to its 〈byte sequences〉 then the expansion of such control
sequences is not welcome. You can suppress the expansion by \let\macro=\relax before \write starts the

8

expansion of its parameter. But \write works asynchronously in most situations and you can manipulate
with hundreds or thousands control sequences declared as UTF-8 codes. The encTEX serves a simple tool
to solve this problem: If \mubyteout>=3 then encTEX gives the \relax meaning to each control sequence
declared in output side of the conversion table before the \write starts its expansion and it returns back
these control sequences to their original meaning immediately after \write finish its work. Example:

\mubyte \foo ABC\endmubyte \def\foo{macro body}
\mubyteout=2
\immediate\write16{testwrite: \foo} % prints "testwrite: macro body"
\immediate\write16{testwrite: \noexpand\foo} % prints "testwrite: ABC"
\mubyteout=3
\immediate\write16{testwrite: \foo} % prints "testwrite: ABC"
\message{testmessage: \foo} % prints "testmessage: macro body"
\message{testmessage: \noexpand\foo} % prints "testmessage: \foo"
\edef\a{testedef: \foo} % expands to macro body
\foo % expands to macro body
\immediate\write16{\meaning\foo} % prints "\relax"
\message{\meaning\foo} % prints "macro:->macro body"

Note the difference between \message and \immediate\write16. The control sequences in \message
parameter are always expanded and never converted to the 〈byte sequence〉.

You can set the “noexpand” flag (for \write parameters only) to any 〈control sequence〉 and you need not
declare the 〈byte sequence〉 for it. Write \mubyte 〈control˙sequence〉 \relax \endmubyte for this purposes.
This has the same effect as \mubyte 〈control sequence〉 __\string 〈control sequence〉\space\endmubyte,
but this second solution is more memory consuming because TEX has to store the 〈byte sequence〉 as a string
to the pool.

You can write your own macros which expand to one code in normal situation and to different code in
write parameters. The declaration of \writeparameter control sequence is recommended:

\mubyte \writeparameter \relax \endmubyte \def\writeparameter{}
\def\mymacro{\ifx\writeparameter\relax THIS CODE IS USED IN WRITE.

\else THIS CODE IS USED IN NORMAL EXPANSION.\fi}

3.9. The asynchronous write command and the mubyteout value

If you don’t use \immediate then the \write command first gets its parameter but it expands and prints
this parameter at another time. The \write command stores the actual value of the \mubyteout register
when it gets its parameter. This value is used late when parameter is expanded and written to the file.

This feature gives the possibility to write to more files, first (for table of contents, for example) is written
with conversion to UTF-8 and another files are written without this conversion, because (for example) this
file is an input for a program which cannot read the UTF-8 encoding. You can try:

\newwrite\tocfile \newwrite\indexfile
\immediate\openout\tocfile=\jobname.toc
\immediate\openout\indexfile=\jobname.idx
\mubyteout=3
\write\tocfile{this parameter will be converted to UTF-8}
{\mubyteout=0 \write\indexfile{this parameter stay unchanged}}
\write\tocfile{this parameter will be converted to UTF-8}
\end % now, all three writes are actually done

3.10. Summary of the mubyteout values

Apart from the values 0, 1, 2 and 3, you can set the \mubyteout register to the value −1 or −2. The
summary table of meanings of these values follows:

9

\mubyteout 〈byte〉->〈byte sequence〉 〈cs name〉->〈byte sequence〉 noexpanding
--

0 off off off
1 on off off
2 on on off
3 on on on
-1 on off on
-2 off off on

If the 〈byte〉->〈byte sequence〉 conversion is on then all texts written to the \rite files, log file and to the
terminal are converted. On the other hand, the 〈cs name〉->〈byte sequence〉 conversion and the noexpanding
are related only to the \write arguments (and the \special arguments, see the following chapter).

4. The arguments of the special primitive

The plain texts of non-english languages can occur in the \special arguments. The PDF-outlines are the
good example of this situation. May be, you need to save these arguments in UTF-8 encoding. The encTEX
gives the possibility to do it.

The argument of \special is processed by the value of the integer primitive register \specialout. This
register is introduced by encTEX and its default value is zero.

• \speialout=0 – no conversion, the same as in the original TEX.
• \speialout=1 – only the xchr conversion.
• \speialout=2 – only the \mubyteout conversion.
• \speialout=3 – the \mubyteout conversion followed by the xchr conversion.

The \special primitive expands its argument immediately. If \specialout is 2 or 3 then the expansion
is done by \mubyteout value in the same manner as during the \write expansion. Moreover, \special
saves the current values of \specialout and \mubyteout registers to its memory and use them at the time
of the output to the dvi file.

5. The noconvert primitive

The \noconvert primitive is introduced by encTEX. This primitive suppress the possible conversion of
the following character or the control sequence. More exactly: the \noconvert is non expandable primitive
and does nothing in typesetting output (the same as \relax). If this primitive is used in \message or
\errmessage argument then the control sequence of this primitive is never printed and the following character
is not converted to 〈byte sequence〉 unless the \mubytelog is positive and the character is recorded in output
side of conversion table.

The primitive \noconvert does the same in \write and \special parameters. Moreover, if the control
sequence follows then this control sequence is normally printed unless the \mubyteout is positive and this
control sequence is recorded in output side of conversion table.

The \noconvert\noconvert yields to one \noconvert in the output.
The \noconvert primitive is normally printed to the log and to the terminal in the another situation

than \message and \errmessage parameters. For example when \tracing... is used.

6. Summary of the encTEX’s primitives

• \mubyte — new record to the conversion table, see chapter 3.
• \endmubyte — the \mubyte separator.
• \mubytein — integer register. 0: multi-byte input conversion suppressed, 1 and more: multi-byte input

conversion activated.

10

• \mubyteout — integer register, the level of the output conversion in \write and \special parameters,
see 3.10.

• \mubytelog — integer register, 0: multi-byte output conversion to log and terminal suppressed, 1 and
more: multi-byte output conversion activated.

• \specialout — integer register, the mode of the \special parameter conversion, see chapter 4.
• \noconvert — similar as \noexpand, but for conversion process. See chapter 5.
• \xordcode — access to xord vector, see 2.1.
• \xchrcode — access to xchr vector, see 2.1.
• \xprncode — access to “printability” vector, see 2.2.

The summary of 〈optional prefixes〉 in \mubyte primitive follows. The character “#” means the token of
category 6 and “_” means the token of category 7 here.

• no prefix — records to the input and output side of the conversion table.
• _ — records only to the input side of the conversion table.
• __ — records only to the output side of the conversion table.
• #〈number〉 — records to the input side of the conversion table, the control sequence will be inserted and
〈number〉 bytes will be kept without conversion again.

• \relax — the control sequence will be not expand in \write parameters.

More prefixes may be implemented in next versions of encTEX. The prefix has its first character different
from catcode 10, 11 or 12. This rule will be kept in next versions thus it is sufficient to use the first character
of 〈byte sequence〉 with this category if no prefix is needed.

7. The macro files

The encTEX package includes some encoding tables inputted by \input during format generation. These
tables support encodings widely used in Czech texts. The more information about these macro files are in
comments of these files and in the Czech version of the documentation.

11

