
Second version of encTEX: UTF-8 support

Petr Oľsák

Czech Technical University in Prague

Email: petr@olsak.net

Abstract: The UTF-8 encoding keeps the standard ASCII charac-

ters unchanged and encodes the accented letters of our alphabets

in two bytes. The standard 8bit TEX is not ready for the UTF-8 input
because it have to manage the single character as two tokens. It

means you cannot set the \catcode, \uccode, etc. to these single

characters and you cannot do \futurelet of the next character
in normal sense. The second version of my encTEX solves these

problems.
The encTEX is full backward compatible with the original TEX. It

adds ten new primitives by which you can set or read the conversion

tables used by input processor of TEX or used during output to the
terminal, log and \write files.

The second version gives possibility to convert the multi-byte

sequences to one byte or to control sequence. You can implement
up to 256 UTF-8 codes as one byte and unlimited number of other

UTF-8 codes as a control sequence. All internals in 8bit TEX are
working in the same way as if “normal one byte encoding” of input

files is used.

I think that the UTF-8 encoding will be used more common. In
such situation, there is no another way than to modify the input

processor of TEX otherwise the 8bit TEX will dead in short time.

1 What is encTEX?

EncTEX is a TEX extension which allows re-encoding of input stream on input
processor of TEX (before tokenization) and backward re-encoding of output

stream during \write and output to the terminal and log. It is implemented as

the patch to the change file tex.ch. The patches are ready for web2c distribution
on [1] and (may be) encTEX becomes as a standard web2c extension like mikTEX.

Try to use the -enc option on command line to test if your TEX is equipped with
this extension. If not, you can get and apply the patches and rebuild TEX binaries.

The patches affect TEX, eTEX, pdfTEX and pdfeTEX programs. All these programs

will dispose of this extension.
First version of encTEX was released in 1997. This version was able to do

only byte to byte conversion by affecting the TEX’s internal xord and xchr vectors.

EncTEX introduced three primitives in its first version: \xordcode (reads or
sets the values of xord vector for input re-encoding), \xchrcode (reads or sets

EuroTEX 2003

2 Petr Oľsák

the values of xchr vector for output re-encoding) and \xprncode (reads or sets

the values of newly introduced xprn vector which controls the “print-ability” of
characters—it controls the possibility of the character conversion to ^^ab form

on output side). See my article [2] for more details.

The first version of encTEX was not widely used because the TCX tables was
renovated in web2c distribution immediately after encTEX was released. Roughly

speaking, the TCX tables do the same work as first version of my encTEX but less
flexible. There was no reason to combine the TCX tables with encTEX.

The second version of encTEX was designed and prepared by me in Decem-

ber 2002 and released in January 2003. This version introduces seven more
primitives in order to user can control the multi-byte input re-encoding and re-

verse output re-encoding. Groups of bytes on input stream can be converted

to one byte or to control sequence. The conversion is done before tokenization
but the control sequence generated by this conversion is not re-tokenized again

and token processor does not go to “ignoring spaces” state after such control
sequence. The backward conversion during \write allows you to convert one

byte or control sequence to the original group of bytes.

The second version of encTEX is backward compatible with the first one, of
course. The detail documentation is available on [1]. The very nice on-line html

documentation written by David Nečas (Yeti) is available on [5]

2 Motivation

I am maintainer of a csplain format—the basic part of the CSTEX package (for
Czech and Slovak users). The csplain is similar as very known plainTEX format

(by Don Knuth, [4]). Moreover, csplain solves the processing of all letters from

Czech and Slovak alphabets. It means that the CS-fonts (encoded by ISO-8859-2)
is used by default instead of Computer Modern fonts, the hyphenation tables for

Czech and Slovak languages are inputted in the same encoding and all Czech
and Slovak letters have to be treated as single non-composite symbols. These

symbols have \catcode set to 11 (letter), thus they can be used in control

sequences too.
Czech and Slovak alphabets are encoded by many mutual incompatible stan-

dards and pseudo-standards in various operating systems and operating envi-

ronments. All these encodings have to be converted to internal ISO-8859-2 in
csplain at input processor level and they have to be converted back to the

input encoding during \write, terminal and log output. Only this rule keeps
the independence of the TEX processing on the operating system.

Note: if the source text of the Czech or Slovak document is transported

from one environment to another, the re-encoding to the standard of the target
environment is done automatically or by user manually. The main principle is

that the Czech and Slovak characters in source text have to be displayed correctly

by used operating environment before it is processed by csplain.
I have created the cstrip test in 1998 [3]. You can verify if you are really

using the csplain format by this test. This test verifies if TEX’s input processor

Second version of encTEX: UTF-8 support 3

is set correctly depending on your operating environment: all Czech and Slovak

characters have to be mapped into ISO-8859-2 and they have to be written back
to the input encoding on terminal, log and \write files. The ^^ab form is not

permitted for Czech and Slovak letters.

We were able to set the input processor properly for csplain in old TEX
distributions. For example emTEX have used TCP tables. On the other hand

the web2c distribution have had disabled its TCX tables in 1997 thus users was
not able to implement the csplain format correctly in operating environments

where different encoding of our alphabets from ISO-8859-2 were used. This was

the main motivation of encTEX extension of TEX.
Now, the new encoding standard derived from UNICODE and named UTF-8

is used very often. The non-ASCII characters are encoded in two or more bytes

here. If this encoding standard is used in our operating environment then we
need to be able to set multi-byte conversion in input processor of TEX. There is

no other way to carry out the cstrip test. This was my motivation of second
version of the encTEX.

3 Multi-byte re-encoding

The detail documentation is included in encTEX package. Thus, only a short

overview of the principles is presented here.
Second version of encTEX introduces seven new TEX primitives to define and

control re-encoding between multi-byte input/output and TEX internal represen-

tation. These are:

• \mubyte and \endmubyte defining the conversions,

• \mubytein, an integer register controlling input conversion,
• \mubyteout, an integer register controlling output conversion,

• \mubytelog, an integer register controlling output to terminal and log

file,
• \specialout, an integer register controlling \special argument treat-

ment, and
• \noconvert, a primitive suppressing output conversion.

The default values of all the new registers are such that encTEX behaves

compatibly with unmodified TEX (incidentally, it means zeroes).
You can set the conversion table by the couple \mubyte and \endmubyte.

Examples:

\mubyte ^^c1 ^^c3^^81\endmubyte % Aacute
\mubyte ^^c4 ^^c3^^84\endmubyte % Adieresis
...

It means that for example the group of two bytes ^^c3^^81will be converted

to one byte ^^c1 (if \mubytein is positive) and this byte is converted back to
byte sequence ^^c3^^81 during \write (if \mubyteout is positive) and to log

and terminal (if \mubytelog is positive).

4 Petr Oľsák

If your operating environment uses UTF-8 encoding then the two bytes

^^c3^^81 are displayed as Á. You can do the “normal things” with this character
in your text editor:

\catcode ‘Á=11 \def\myÁsequence{...}
...
\def\run{\futurelet \next \dotest}
\def\dotest{\ifx \next Á...}
\run Áha
...
\uccode‘Á=‘Á \lccode‘Á=‘á \sfcode‘Á=999
...

This behavior is very desirable for csplain format and cstrip test. You can

convert your old csplain documents to the new UTF-8 encoding and you can
process them by the csplain in operating environment with UTF-8 standard.

You get the absolutely the same result as in old days. This backward compatibility

is most important for me.
Next example:

\mubyte \Alpha ^^ce^^91\endmubyte
\mubyte \Beta ^^ce^^92\endmubyte
...
\mubyte \leftarrow ^^e2^^86^^90\endmubyte
\mubyte \uparrow ^^e2^^86^^91\endmubyte
...

For instance, the group of three bytes ^^e2^^86^^90 is now converted to

\leftarrow control sequence and this control sequence is converted back to
^^e2^^86^^90 during \write if \mubyteout ≥ 3. The UTF-8 encoding of

math characters are implemented by this way, see utf8raw.tex file in encTEX
distribution and math-example.tex for more complex example.

The UTF-8 encoding tables for encTEX was prepared by David Nečas [6]. He

has made his own Python script which converts the NamesList.txt [7] with
UNICODE declarations of characters to the \mubyte. . .\endmubyte tables. This

script is included in encTEX distribution.

There is another way of declaration of math symbols:

\mubyte \utfAlpha ^^ce^^91\endmubyte
\mubyte \utfBeta ^^ce^^92\endmubyte
...
\def\uftAlpha{\ensuremathmode \Alpha}
\def\uftBeta{\ensuremathmode \Beta}
...
\def\ensuremathmode #1{\ifmmode #1\else $#1$\fi}

This second solution is more robust because you can write math symbol in
UTF-8 encoding without a need to start the math mode explicitly. Note that

these symbols are displayed as natural math symbols in your text editor. I did

Second version of encTEX: UTF-8 support 5

not use this solution in my macros distributed with encTeX because this concept

is not compatible with common TEX documents where all math mode switches
are explicitly written.

4 More funny examples

You can use encTEX capability for another purposes than only for encoding. Look

to the next simple example:

\mubyte \TeX TeX\endmubyte
\mubyte \copyright (C)\endmubyte
\mubyte \dots ...\endmubyte

If you write “TeX and friends” (without backslash) then input processor
of encTEX converts this stream to \TeX, 〈space〉, a, n, d, 〈space〉, f, r, etc. This is

desired behavior. Moreover, if \mubyteout ≥ 3 then the \TeX control sequence

is not expanded during \write and it is converted back to its input byte sequence
“TeX”. On the other hand, if you write \LaTeX, then the input is converted to

two control sequences \La\TeX and it is not desired. You can solve this problem

by defining the “\La” macro or you can declare:

\mubyte \LaTeX LaTeX\endmubyte
\mubyte \LaTeXe LaTeX2e\endmubyte

Note that both byte sequences in this example begin by the same text “LaTeX”.
If the two characters “2e” follow immediatelly then \LaTeXe control sequence
is generated (by second line of this example) else \LaTeX control sequence is

generated. The order of the lines in this example is unimportant.

What happens, if this setting is active and you write \LaTeX (including
backslash)? Nothing bad. The empty control sequence before generated control

sequence \LaTeX is suppressed by encTEX, it means that only \LaTeX control
sequence is the result of the conversion.

I implemented program vlna adding tildes after Czech one-letter prepositions

(v, k, s, u, o, z) entirely in encTEX using \mubyte. It correctly handles math
mode (no tildes are added there). It’s available in the encTEX distribution as an

example of crazy application of encTEX in the file vlna.tex.

5 References

1. http://www.olsak.net/enctex.html, the main page of encTEX project.
2. Petr Oľsák: EncTEX—A little extension of TEX, in: TUGboat,

vol. 19/4, pp. 336–371.
3. ftp://ftp.math.feld.cvut.cz/pub/cstex/base/cstrip.tar.gz.
4. Donald Knuth: The TEXbook.

5. http://www/trific.ath.cx/tex-mf/enctex/
6. http://www/trific.ath.cx/, David Nečas – home page.

7. http://www.unicode.org/Public/UNIDATA/NamesList.txt

