
DocBy.TEX – Making a Documentation Of Sources By TEX

version May 2014

Petr Oľsák

www.olsak.net/docbytex.html

Table of Contents

1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 For Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 File Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
�\module . . . 4

2.2 An Example of the Module Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
�\ins . . . 4, mypair . . . 5, my_special_function . . . 5

2.3 What Version of TEX for DocBy.TEX? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
�enc . . . 6, �NOenc . . . 6, �PDF . . . 6, �DVI . . . 6

2.4 Searching Words by EncTEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
�\noactive . . . 6, �\onlyactive . . . 7

2.5 The Index, Table of Contents, Footnotes and Bookmarks Generation . . . . . . . . . . . . . . . . 7
�\doindex . . . 7, �\dotoc . . . 7, �\bye . . . 7, �\bookmarks . . . 7

2.6 Source Code Inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
�\ifirst . . . 7, �\inext . . . 7, �\end . . . 8, �\empty . . . 8, �\nb . . . 8,
�\obrace . . . 8, �\cbrace . . . 8, �\percent . . . 8, �\inchquote . . . 8, �\lineno . . . 8,
�\skippingfalse . . . 8, �\skippingtrue . . . 8, �\count . . . 8

2.7 References to Line Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
�\ilabel . . . 9

2.8 Verbatim Environment by \begtt/\endtt and by Quotes . . . . . . . . . . . . . . . . . . . . . . . . . . 9
�\begtt . . . 9, �\endtt . . . 9

2.9 The Declaration of the Documented Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
�\dg . . . 9, �\dgn . . . 9, �\dgh . . . 9, �\dl . . . 9, �\dln . . . 9, �\dlh . . . 9,
�\iidg . . . 10, �\iidgh . . . 10, �\iidgn . . . 10, �\iidl . . . 10, �\iidlh . . . 10,
�\iidln . . . 10
2.10 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
�\namespace . . . 11, �\endnamespace . . . 11
2.11 The Application Level of the Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
�\api . . . 11, �\apitext . . . 11
2.12 Title, Parts, Sections, Subsections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
�\sec . . . 12, �\subsec . . . 12, �\part . . . 12, �\title . . . 12, �\projectversion . . . 12,
�\author . . . 12, �\headtitle . . . 12, �\savetocfalse . . . 12, �\emptynumber . . . 12
2.13 Hyperlinks, References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
�\label . . . 12, �\pgref . . . 12, �\numref . . . 12, �\ilink . . . 12, �\cite . . . 12,
�\labeltext . . . 13
2.14 Pictures Inserting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
�\ifig . . . 13, �\figdir . . . 13
2.15 Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
�\begitems . . . 13, �\enditems . . . 13, �\item . . . 13, �\itemno . . . 13

3 For Advanced Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Internal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
\titindex . . . 14, \tittoc . . . 14, \titmodule . . . 14, \titversion . . . 14, \opartname . . . 14

3.2 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
\begtthook . . . 14, \quotehook . . . 14, \indexhook . . . 14, \tochook . . . 14,
\bookmarkshook . . . 14, \outputhook . . . 14

3.3 The Commands \module and \ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
\module . . . 15, \docsuffix . . . 15, \modulename . . . 15, \ins . . . 15

3.4 The Comments Turned to Green Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1

http://www.olsak.net/docbytex.html


Table of Contents DocBy.TEX

\setlinecomment . . . 15, \setlrcomment . . . 15, \linecomment . . . 15, \leftcomment . . . 15,
\rightcomment . . . 15, \returntoBlack . . . 15

4 For Designers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Parameters and Auxiliary Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
\hsize . . . 16, \vsize . . . 16, \nwidth . . . 16, \bbf . . . 16, \bbbf . . . 16,
\btt . . . 16, \ttsmall . . . 16, \rmsmall . . . 16, \itsmall . . . 16, \partfont . . . 16,
\setsmallprinting . . . 16, \ttstrut . . . 16, \setnormalprinting . . . 16, \Blue . . . 17,
\Red . . . 17, \Brown . . . 17, \Green . . . 17, \Yellow . . . 17, \Black . . . 17,
\setcmykcolor . . . 17, \oriBlack . . . 17, \rectangle . . . 17, \docbytex . . . 17

4.2 Sections and Subsections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
\printsec . . . 17, \printsecbelow . . . 17, \printsubsec . . . 18, \printsubsecbelow . . . 18,
\printpart . . . 18, \printpartbelow . . . 18, \emptynumber . . . 18

4.3 The Title, The Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
\title . . . 18, \iititle . . . 18, \projectversion . . . 19, \author . . . 19

4.4 Headers and Footers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
\footline . . . 19, \headline . . . 19, \normalhead . . . 19, \noheadline . . . 19,
\headtile . . . 19, \headlinebox . . . 19

4.5 Printing of the Hyperlink Destinations and Footnote References . . . . . . . . . . . . . . . . . . . . 20
\printdg . . . 20, \printdginside . . . 20, \printfnote . . . 20

4.6 The Index and Table of Contents Item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
\ptocline . . . 20, \ptocsubline . . . 20, \mydotfill . . . 21, \ptocentry . . . 21,
\myldots . . . 21, \printindexentry . . . 21, \separeright . . . 21

4.7 The Source Code Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
\printiabove . . . 21, \printiline . . . 21, \printibelow . . . 21, \specrule . . . 22,
\isnameprinted . . . 22

4.8 The \begtt ... \endtt Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
\printvabove . . . 22, \printvline . . . 22, \printvbelow . . . 22

4.9 Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
\figwidth . . . 22, \ifig . . . 22, \figdir . . . 23
4.10 Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
\begitems . . . 23, \enditems . . . 23, \itemno . . . 23, \dbtitem . . . 23, \item . . . 23

5 For TEX Wizards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Auxiliary Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
\dbtwarning . . . 23, \defsec . . . 23, \edefsec . . . 23, \undef . . . 23, \nb . . . 23,
\obrace . . . 23, \cbrace . . . 23, \percent . . . 23, \inchquote . . . 23, \softinput . . . 23,
\setverb . . . 24

5.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
\dbtversion . . . 24, \enctextable . . . 24, \owordbuffer . . . 24, \noactive . . . 24,
\emptysec . . . 24, \sword . . . 25, \onlyactive . . . 25, \oword . . . 25

5.3 The \ifirst, \inext, \ilabel Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
\lineno . . . 25, \ttlineno . . . 25, \ifcontinue . . . 25, \ifskipping . . . 25,
\skippingfalse . . . 25, \skippingtrue . . . 25, \ifirst . . . 25, \inputfilename . . . 25,
\inext . . . 26, \noswords . . . 26, \readiparamwhy . . . 26, \startline . . . 26, \stopline . . . 26,
\scaniparam . . . 26, \scaniparamA . . . 26, \scaniparamB . . . 26, \scaniparamC . . . 26,
\insinternal . . . 26, \testline . . . 27, \nocontinue . . . 27, \returninsinternal . . . 27,
\readnewline . . . 27, \printilineA . . . 28, \lastline . . . 28, \ilabellist . . . 28,
\ilabel . . . 28, \ilabelee . . . 28, \testilabel . . . 28

5.4 Commands \begtt, \endtt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
\begtt . . . 28, \startverb . . . 28, \runttloop . . . 28, \endttloop . . . 28,
\scannexttoken . . . 28

5.5 The Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
\namespacemacro . . . 29, \namespace . . . 29, \locword . . . 29, \endnamespace . . . 29,
\ewrite . . . 30, \lword . . . 30, \genlongword . . . 30, \refns . . . 30, \refnsend . . . 30,
\currns . . . 30

5.6 The \dg Command and Friends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2



1 Preface DocBy.TEX

\dg . . . 30, \dl . . . 30, \dgn . . . 30, \dgh . . . 30, \dln . . . 30, \dlh . . . 30,
\dgpar . . . 30, \dparam . . . 30, \nextdparam . . . 31, \varparam . . . 31, \gobblelast . . . 31,
\managebrackets . . . 31, \printbrackets . . . 31, \maybespace . . . 31, \iidg . . . 31,
\iidl . . . 31, \iidgh . . . 32, \iidlh . . . 32, \iidgn . . . 32, \fword . . . 32, \iidln . . . 32,
\flword . . . 32

5.7 The Special Footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
\totalfoocount . . . 33, \totalfoodim . . . 33, \specfootnote . . . 33, \refcoef . . . 33,
\gobblerest . . . 33

5.8 Section, Subsection, Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
\secnum . . . 34, \subsecnum . . . 34, \sectitle . . . 34, \ifsavetoc . . . 34, \sec . . . 34,
\subsec . . . 34, \tmpA . . . 34, \secparam . . . 34, \seclabel . . . 34, \secparamA . . . 34,
\secparamB . . . 34, \nolastspace . . . 34, \setparamC . . . 34, \iisec . . . 34, \makelinks . . . 34,
\iisubsec . . . 35, \partnum . . . 35, \thepart . . . 35, \part . . . 35, \iipart . . . 35

5.9 Links and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
\savelink . . . 35, \iilink . . . 35, \linkskip . . . 35, \savepglink . . . 36, \pglink . . . 36,
\dopglink . . . 36, \reflabel . . . 36, \numref . . . 36, \pgref . . . 36, \labeltext . . . 36,
\writelabel . . . 36, \writelabelinternal . . . 36, \label . . . 36, \cite . . . 36, \api . . . 37,
\apitext . . . 37, \bye . . . 37, \setrefchecking . . . 37, \ignoretorelax . . . 38
5.10 Generating of Table of Contents, Index and PDF Outlines . . . . . . . . . . . . . . . . . . . . . . . . 38
\addtext . . . 38, \reffile . . . 38, \reftocline . . . 38, \tocbuffer . . . 38, \dotocline . . . 38,
\istocsec . . . 38, \refdg . . . 38, \refapiword . . . 38, \dotoc . . . 39, \indexbuffer . . . 39,
\doindex . . . 39, \ignoretwo . . . 40, \remakebackslash . . . 40, \addbookmark . . . 40,
\currb . . . 40, \currsecb . . . 40, \bookmarks . . . 40, \setoutline . . . 40, \cnvbookmark . . . 40,
\nobraces . . . 40, \nobrA . . . 40
5.11 Sorting by Alphabetical Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
\ifAleB . . . 41, \nullbuf . . . 41, \return . . . 41, \fif . . . 41, \sortindex . . . 41,
\mergesort . . . 41, \isAleB . . . 42, \testAleB . . . 42, \napercarky . . . 42
5.12 Merging of the List of the Page Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
\refuseword . . . 42, \listofpages . . . 42, \dgnum . . . 42, \apinum . . . 42, \transf . . . 43,
\cykltransf . . . 43
5.13 Multicolumn typesetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
\calculatedimone . . . 44
5.14 The final settings, catcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
\langleactive . . . 44

6 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1 Preface
DocBy.TEX gives you a possibility to creating a documentation of source codes by TEX. The source

codes can be i C language or whatever other computer language.
On the contrast of Knuth’s “literal programming” this tool does not use any preprocessors for

doing filters of information for human and for computer which is stored in single source file. I suppose
that programmers prefer to write and tune the program in computer language before they start to write
the documentation. It would be fine to write the documentation after that and without modifying of
the source code of the working program. Modern systems gives possibility to open more windows with
more than one text editors: you can see the source code in one editor and write the documentation of
it in second. Now, there is no need to merge both information (for computer and for human being) to
single file.

The first part of this document (2) describes the DocBy.TEX at user level. The next part docu-
ments the implicit macros implemented in DocBy.TEX, which are supposed that experienced user will
want to change them in order to realize special wishes. The next section 4 includes the documentation of
design-like macros. User can change them to create a better look of his/her document. The last section 5
describes all macros of DocBy.TEX at implementation level in detail.

This document is created by DocBy.TEX itself, it means that it can serve as an example of
DocBy.TEX usage.

3



2 For Users DocBy.TEX

2 For Users

2.1 File Types
The DocBy.TEX is proposed as a tool for making documentation of C language. That is a reason

why the next example is a documentation of the hypothetical program written in this language. If you
needs to document another computer language, you can change some macros (see the section 3).

Wee suppose that the source code is separated into “modules”. Each module is intended to one
special problem which is solved by programmer. Each module has its own name (foo for example) and
it is written in files foo.h and foo.c. These files are compiled into foo.o. All modules are linked at the
end of compilation into the executable program.

If we want to document these source files, we create new file with .d extension for each module,
for example foo.d. The documentation of the module will be written in that file. Next we create the
main file (for example program.tex) where all *.d files are included by the command \module. You can
use commands \title (name of the program), \author (name of the author) and (for example) \dotoc
for making of table of contents, \doindex for generating of the index. Of course, you can write first or
general notes to the program in the main file too. The contents of the file program.tex can be:

\input docby.tex
\title The Program lup -- Documentation of The Source Codes

\author Progr and Ammer

\dotoc % the table of contents will be here

\sec The structure of the source files

The source files are in the three modules.
The auxiliary functions are defined in "base.c" and "base.h" files.
The window management are solved in "win.c" and "win.h" files.
The file "main.c" includes the function "main".
\module base
\module win
\module main
\doindex % the index will be created here
\bye

We decided to sort the documentation from “simple” functions to the more complicated problems.
Somebody can prefer another way from main function first and the auxiliary functions at the end. He/she
can write:

\module main
\module win
\module base
\doindex
\bye

Both ways are possible because the documentation is hyperlinked automatically. When the reader
see the usage of some function, he/she can simply go to the definition of this function simply by one
click. The reverse hyperlinks are included too.

2.2 An Example of the Module Documentation
Let we document the module foo in the file foo.d. This file is included by module foo command.

We can document any part of source foo.c by words and combine this by a listing of parts of source
foo.c or foo.h by command \ins c 〈keyword〉 or \ins h 〈keyword〉. The part of the source code is
declared usually by //: 〈keyword〉 line. The example follows.

Suppose that the following text is written in the file foo.d

4



2 For Users DocBy.TEX

The struct \dg [struct] mypair is used as a return value of
"my_special_function". There are two "float" values.
\ins c mypair

The \dg [struct mypair] my_special_function() has one parameter "p"
and returns double and triple of this parameter in "mypair" struct.
\ins c my_special_function

The file foo.c has to include the comments //: mypair and //: my_special_function. These
comments delimit the part of source code to be listed in the documentation:

#include <stdio.h>

//: mypair

struct mypair {
float x, y;

};

//: my_special_function

struct my_special_function (float p)
{
struct mypair return_pair;
return_pair.x = 2*p; // double of p
return_pair.y = 3*p; // triple of p
return return_pair;

}

The result looks like that:

The struct mypair is used as a return value of my_special_function. There are two float
values.

foo.c
5: struct mypair {

6: float x, y;

7: };

The my_special_function has one parameter p and returns double and triple of this parameter
in mypair struct.

foo.c
11: struct my_special_function (float p)

12: {

13: struct mypair return_pair;

14: return_pair.x = 2*p; // double of p

15: return_pair.y = 3*p; // triple of p

16: return return_pair;

17: }

The first listed part of source code is started by //: mypair and ended by firs occurrence of the
//:. The second listed part is started by //: my_special_function and ended at the end of file. These
delimiters (and the neighbouring empty lines) are not printed.

The order of the listed parts are independent of the order in source file. We can first comment my
special function and include its source code. Afterward we can explain the structure mypair and show
the source code of this structure.

Notice that the numbers of lines are inserted exactly by the lines in source code. It means that
the missing line #include <stdio.h> has number one and first printed line has the number five.

The //: 〈keyword〉 delimiter and the closing delimiter //: can be at arbitrary place of the line,
no essential at begin of line. The lines with the delimiters are not printed.

struct mypair: 5 struct mypair my_special_function(): 5

5



2 For Users DocBy.TEX

Notice the command \dg in source of the documentation. The documented word (separated
by space) follows immediately. The optional parameter in brackets is interpreted as “type” of the
documented word. The documented word is printed in red color on the rectangle and all occurrences of
that word in the documentation is printed in blue color and treated as hyperlink to the place where is
the word documented (red color). The occurrence of that word have to be written between the quotes
"..." or it is placed in the inserted source code. You need not do any marks in source code in order to
highlight the usage of the documented word. This is done automatically.

If the documented word has the brackets () at the end, then it is the function. These brackets
are not printed in the current place, but they are printed in the footnotes and in the index.

The quotes "..." are delimiters of “parts of listings inside paragraph”. This text is printed by
typewriter font and the occurrences of documented words are hyperlinked here. All characters have
printed here without re-interpretation, it means this environment behaves like “verbatim”.

The footnote includes a list of all documented words on the current page. Each word is followed
by list of pages here. These pages points to all pages here the documented word occurs.

All documented words are automatically inserted to the alphabetical index created by \doindex
command.

2.3 What Version of TEX for DocBy.TEX?
In order to activate all features mentioned above we need to use pdfTEX extended by encTEX.

The language of automatically generated words (such as Contents, Index) is selected by current value
of \language register when \input docby.tex is processed. DocBy.TEX writes on the terminal the
“modes” information:

This is DocBy.TeX, version May 2014, modes: enc+PDF+ENG

DocBy.TEX can work in the following modes: enc/NOenc, PDF/DVI, ENG/CS.
The enc mode is activated if the encTEX is detected. Otherwise (if encTEX is unavailable),

DocBy.TEX prints warning and sets the NOenc mode: the occurrences of documented words are not
detected and hyperlinked. The index is much more poor, because the pages with occurrences of the
words are missing. Only the places of documentation of the words are referred. It means that the
encTEX extension is very important for DocBy.TEX. This extension is usually available in current TEX
distributions and it is activated by pdfcsplain format. So the recommendation is: use pdfcsplain
when you are using DocBy.TEX.

The PDF mode is activated if the pdfTEX is used. Otherwise DocBy.TEX switches to the DVI
mode and prints the warning message on the terminal. The colors and hyperlinks are not working in
DVI mode but the list of pages with all occurrences of documented words is printed in index (if encTEX
is activated).

If \language=0 or (pdf)csplain isn’t used then language mode is set to ENG (English words
will be generated). Else this mode is set to CS (Czech words will be generated). If you are using another
language, you need to redefine some macros, see section 3.1.

2.4 Searching Words by EncTEX
The hyperlinked words are located by encTEX by “hungry algorithm”. It means that if there are

two documented words abc and abcde then the text abcdefg is divided to the hyperlinked part abcde
(the blue color is used) and to the normal part fg (black color). The hyperlinked part points to the place
of the documentation of the word abcde. On the other hand the text abcdx is divided to hyperlinked
part abc and this part points to the documentation of the word abc.

EncTEX is not able to work with regular expositions. It means that there is no simple possibility
to search only words bounded by spaces, other white characters or by punctuation. EncTEX searches
the word as a part of another word. This leads to unexpected situations: the short word is documented
but it is a part of longer undocumented words used in source code. For example, you document the
structure turn but you don’t need to hyperlink the part of the word return. In such case you can define
the return word as a “normal” undocumented word by the command \noactive{〈word〉} (for example
\noactive{return}). This command declares the 〈word〉 as a searched word (for encTEX) but sets it
as inactive.

Imagine that you document a word which is used in code in “documented meaning” only if
some text precedes this word and/or some text followed the word. If the word is used with another

6



2 For Users DocBy.TEX

prefix/postfix then this is undocumented meaning of the word. You can use in such case a declaration
\onlyactive{〈before〉}{〈word〉}{〈post〉}. If you declare the word by \dg 〈word〉 (or by similar manner,
see section 2.9), then the word is hyperlinked in source code only if the text 〈before〉 precedes and the
text 〈post〉 follows. The text 〈before〉 and/or 〈post〉 itself stays inactive. The parameters 〈before〉 or
〈post〉 can be empty (no both simultaneously) and you can use more \onlyactive declarations of single
〈word〉.

DocBy.TEX activates the encTEX searching only inside the group "..." or in listings of source
codes. It means that \mubytein=1 (see encTEX documentation) is set only in these situations. We
recommend to leave \mubytein=0 outside these environment. If you set \mubytein=1 (for example
because of UTF-8 encoding) for the whole document then you do it on your own risk. The words inside
your comments can be hyperlinked in such case.

2.5 The Index, Table of Contents, Footnotes and Bookmarks Generation
The index and table of contents generation is fully done on macro level of DocBy.TEX. You needn’t

use any external program (DocBy.TEX itself does the alphabetical sorting). Just write \doindex or
\dotoc on the desired place in your document. Warning: the table of contents is not correctly generated
after first pass of TEX. You have to run TEX twice. The pages may be changed after second pass because
of table of contents is inserted. Thus correct oputput is (may be) guaranteed after third pass of TEX.
The words “may be” are written here due to the problem with footnotes mentioned in section 5.7. The
footnotes are changed in all three TEX runs and this influences the vertical typesetting retrospectively.
This is a reason why DocBy.TEX performs the check of consistency of references generated by current
and previous TEX pass. This check is done during the \bye macro is processing. Thus, it is usable to
write \bye command instead \end primitive command at the end of the document. If the \bye macro
is used then you can see the message “OK, all references are consistent” on the terminal or the
warning “page references are inconsistent, run me again”.

You can do test of consistency in more detail by following script:

#!/bin/bash
cp document.ref document.r0
pdfcsplain document
diff document.r0 document.ref

DocBy.TEX tries to fix the footnote processing after second pass in order to document convergence.
If you do big changes in the document after that then DocBy.TEX does change the numbers of lines for
footnotes and the Overfull/Underfull boxes may occur. We recommend to remove the .ref file and to
run three passes of DocBy.TEX again in such case.

DocBy.TEX creates the structured bookmarks in PDF output if \bookmarks command is used.
The structured bookmarks include names of parts, sections, subsections and documented words. There
is no matter where the command \bookmarks is written because the information used in bookmarks is
read from .ref file. The problem about encoding of texts of bookmarks is discussed in section 3.2.

2.6 Source Code Inserting
Instead of simply command \ins you can use two more elaborate commands \ifirst and \inext

in order to insert a part of source code in your documentation.
The \ifirst{〈file〉}{〈from〉}{〈to〉}{〈why〉} command inserts a part of the file 〈file〉 (full file name

including extension) from first line with the pattern 〈from〉 ending by line with the pattern 〈to〉 or (if
such line does not exists) to the end of file. If the pattern 〈from〉 does not exists then the warning is
printed on the terminal.

The parameters of \ifirst command are first expanded and used thereafter. The active tie
character is expanded to the space.

The parameter 〈why〉 specifies if the line with 〈from〉 pattern and/or the line with 〈to〉 pattern
have to be printed or not. This parameter has only two characters (plus and/or minus) with the following
meaning:

why: -- don’t print first nor ending line
why: +- print first line but don’t print ending line
why: -+ don’t print first line but print ending line

7



2 For Users DocBy.TEX

why: ++ print both lines

If the parameter 〈from〉 is empty (use {} notation) then the printing starts on the begin of file.
If the parameter 〈to〉 is empty, only one line is printed. If 〈to〉=\end, then printing stops at the end of
file. The ending line does not exists in such case.

If the parameter 〈from〉 (or 〈to〉 respectively) has \empty value (use {\empty} notation) then the
printing starts (or stops respectively) at the first empty line. You can specify if this line is printed by
〈why〉 parameter.

The parameters 〈from〉 and 〈to〉 can be started by ^^B character (it means that the pattern have
to be at the begin of the line) and/or they can be ended by ^^E character (it means that the pattern
have to be at the end of line). For example the parameter ^^Btext^^E means that text have to be on
the line without nothing more.

The special TEX characters (special categories) are not allowed in 〈from〉 and 〈to〉 parameters.
You have to use special control sequences \nb, \obrace, \cbrace, \percent and \inchquote instead
of \, {, }, %, " characters. You can define aditional sequences for another special TEX characters, for
example:

{\catcode‘\#=12 \gdef\hashmark{#}}

If parameters 〈from〉 and 〈to〉 are the same or the 〈from〉 pattern is on the same line as 〈to〉
pattern then only this line is printed (〈why〉 have to be ++ or +-). If this condition is true but 〈why〉 is
-+ or --, then the printing of the code is stopped at next line with 〈to〉 pattern or at the end of the file.

The \ifirst command remembers the name of the included file and the number of the last line
which was read. Next time you can use the command \inext{〈from〉}{〈to〉}{〈why〉}. This command
starts the searching of the 〈from〉 pattern from the first line which wasn’t read by the previous \ifirst or
\inext command. The parameters of the \inext command have the same meaning as the parameters
of the \ifirst command. The parameter 〈file〉 is missing because the 〈file〉 from the last \ifirst
command is used.

The number of the last line read by \ifirst or \inext command is stored in \lineno register
(no matter if this line was printed or no). If the printing of code was stopped at the end of the file
then \lineno equals to the number of lines of the file. You can do test of reaching of the end of file by
\ifeof\infile.

Examples:

\ifirst {file.txt}{foo}{foo}{++} % print the first line
% with the text "foo"

\inext {foo}{foo}{++} % print the next line with
% the occurence of "foo"

\ifirst {file.c}{//: from}{//:}{--} % the same as \ins command
\ifirst {file.h}{func(}{)}{++} % print of function prototype
\ifirst {file.c}{func(}{^^B\cbrace}{++} % print of the code func
\ifirst {file.txt}{}{\end}{++} % print of the whole file
\ifirst {file.txt}{}{\empty}{+-} % print of the first block

% separated by empty line

If the first line of the code to be printed is empty then it is not printed. If the last line of
the code to be printed is empty, it is not printed too. This is an implicit behavior. But if you write
\skippingfalse, then this behavior is switched off. It means that the empty lines can occur at the
begin or at the end of listings. You can use \skippingtrue in order to return to the implicit behavior.

The parameter 〈from〉 and 〈to〉 can have the prefix in the form \count=〈number〉 . The value of
the 〈number〉 - 1 means how many occurrences of the pattern have to be skipped and ignored during
searching. The 〈number〉-th occurrence of the pattern is only significant. For example {\count=3 foo}
means that two occurrences of foo have to be skipped and the third occurrence points to the right place,
where the printing of the code starts (or ends).

If the prefix \count=〈number〉 is missing then DocBy.TEX supposes that \count=1.
If the parameters 〈from〉 or 〈to〉 are empty and \count=〈number〉 is used then the space after

〈number〉 needn’t be written and the meaning is slightly different: If the 〈from〉 parameter is empty then
\count means the number of line from where the printing is started. If the parameter 〈to〉 is empty
then \count means the number of printed lines. The previous sentences are true for 〈why〉=++ and

8



2 For Users DocBy.TEX

for \skippingfalse. If the 〈why〉 parameter have different value and/or \skipingtrue then you must
add/subtract one or two to/from the line number/number of lines. Examples:

\skippingfalse
\ifirst {file.txt}{\count=20}{\count=10}{++} % print from line 20 to 29
\ifirst {file.txt}{}{\count=2 \empty}{+-} % print to the second empty line
\ifirst {file.txt}{\count=50}{\end}{++} % print from 50th line to the end
\ifirst {file.tex}{\count=5 \nb section}{\count=2 \nb section}{+-}

% print fifth section from TeX source

2.7 References to Line Numbers
The command \cite[〈label〉] expands to the number of the line in source code. How to declare

the 〈label〉? You can do it by \ilabel [〈label〉]{〈text〉}. command used before the \ifirst or \inext
command. You can write more \ilabel commands if you want to declare more 〈label〉s hidden in the
following listing. The order of \ilabel commands is irrelevant.

If the couple 〈label〉 – 〈text〉 is declared by \ilabel then the \ifirst or \inext command
recognizes the occurrence of the 〈text〉 in the listing. The line number of the first occurrence of 〈text〉 is
connected to the 〈label〉, it means the \cite expands to such line number.

The 〈label〉 have to be unambiguous in the whole document. The \cite reference works forward
and backward (after second pass of TEX run).

The table of couples 〈label〉 – 〈text〉 created by set of \ilabel commands is local. It means that
it cooperate only with the first \ifirst or \inext command. These commands use this table and reset
it to the null state. You have to create this table before next \ifirst/\inext command again.

DocBy.TEX does not write any warning if a 〈text〉 doesn’t occur in the listing. Of course, if you
use the unconnected 〈label〉 by \cite command then the warning is printed.

The following example uses the known file foo.c mentioned in the section 2.2.

The declaration of my very special function is on the line~\cite[myfunct].

\ilabel [myfunct] {function (float}
\ilabel [returnx] {pair.x}
\ifirst {foo.c}{}{}{++}

There is very specific idea on the line~\cite[returnx] where the input
parameter is multiplied by two.

2.8 Verbatim Environment by \begtt/\endtt and by Quotes
Verbatim displays of the code can be included to the documentation by \begtt and \endtt pair

of commands. The material to be displayed is written between these commands. All lines are inserted
without changes, without interpretation of special TEX characters. The lines are not numbered here and
the occurrences of documented words are not hyperlinked automatically.

The following sections 3.2 and 4.8 discuss more possibilities of this environment.
You can write verbatim text in paragraph between quotes "...". This text is written by typewriter

font and documented words are hyperlinked automatically. We recommend to use this environment for
all parts of documented code which is mentioned inside the paragraph. This is analogical to math
environment separated by $...$.

2.9 The Declaration of the Documented Word
You can use commands \dg, \dgn, \dgh, \dl, \dln or \dlh in order to declare the documented

word. The semantic of these commands is explained below. The syntax of these commands are slightly
special. The purpose is to minimize the work of the writer, so the braces ({}) are not used, parameters
are separated by space for instance. All these commands have the same syntax thus the example below
uses only \dg command.

The possibilities of the syntax follows:

9



2 For Users DocBy.TEX

\dg 〈word〉 % 〈word〉 separed by space
\dg [〈text〉] 〈word〉 % optional paremeter 〈text〉
\dg [〈text〉]〈word〉 % the space between [〈text〉] add 〈word〉 is optional
\dg 〈word〉() % 〈word〉 with "()" separed by space
\dg [〈text〉]〈word〉() % a combination of previous syntax
\dg 〈word〉, % 〈word〉 separed by comma
\dg [〈text〉] 〈word〉, % a combination of previous syntax
\dg 〈word〉(), % 〈word〉 with "()" separed by comma
\dg [〈text〉]〈word〉(), % a combination of previous syntax
\dg 〈word〉. % 〈word〉 separed by period
etc...

In general: The optional [ can follow after \dg command. The 〈text〉 separated by ] is read in such
case and subsequent optional space is moved to the end of the 〈text〉. It means that \dg [text] word
is the same as \dg [text ]word. Next, the 〈word〉 is read. The 〈word〉 parameter cannot include the
space, comma, period, colon and semicolon because these characters can be separator of the 〈word〉.
These punctuation characters are not part of the 〈word〉 but they are printed. It means that \dg word:
prints word: to the output and sets the word as a documented word. If the scanned 〈word〉 ends by
brackets () then these brackets are removed from 〈word〉 parameter, they are not printed in the current
place but they are printed in footnotes and in the index.

Attention: the space have to be written after comma, period, colon or semicolon separator. If
the space does follow immediately then the scanning process works only if the text between comma-like
separator and space does not contain active characters ("..." for example). If the first character after
space is ‘ (backward quote) then the space and this quote is not printed.

Examples: \dg 〈word〉 ‘~〈next text without line breaking〉 or: \dg 〈word〉 ‘"...".
The commands \dgh, \dgn, \dln, \dlh with space as a separator doesn’t print this separator

because they usually print nothing (see below).
Semantic: The 〈word〉 parameter is documented word. If this 〈word〉 occurs on the other place

in the document between "..." or in code listing then it is hyperlinked automatically (blue color). The
documented word is highlighted by red color in the place where the \dg command is used and the optional
〈text〉 or () does not printed. This is the destination of all blue hyperlinks. The 〈word〉 is printed in
footnote of the current page too including the optional 〈text〉 in and/or including the optional (). The
list of pages where the word is used is printed here too. The same is printed in the index. The index is
sorted alphabetically by the 〈word〉, not by the optional 〈text〉.

The 〈word〉 declared by \dg is declared globally. This place is a reference point for the whole
document.

The \dgh works like \dg but the word is not printed in the place of \dgh (mnemonic: \dg hidden).
But this place is still the destination of hyperlinks and the word occurs in the footnote and in the index.

The \dgn command (mnemonic: \dg next) saves its parameters but prints nothing. The first
occurrence of the 〈word〉 in the next listing will be treated as the \dg is written here.

The \dl declares 〈word〉 locally. If the short name 〈word〉 is used in the same name space
then it is hyperlinked and pointed to the place where \dl is used. The name space is changed by
\module command. It means that 〈word〉 is used locally in the module. The word declared by \dl lives
in two variants: short name “〈word〉” and long name (depends on the current name space, typically
“〈word〉./〈modulename〉”). The long name is accessible in the whole document.

The section 2.10 explains the name spaces in more detail
Each word can be declared at most once in the document else the error is printed by DocBy.TEX

on the terminal. In case of \dl the short name is irrelevant but the long name have to be unambiguous.
The \dlh command is \dl hidden and the \dln means \dl next. They are similar as \dgh and

\dgn.
If somebody hate this complicated parameter scanning then he/she can use internal commands

with three parameters in braces: \iidg, \iidgh, \iidgn, \iidl, \iidlh, \iidln. The usage of the
parameters is: \iidg{〈text〉}{〈word〉}{〈brackets〉}. Of course, you can do more by these commands:
you can declare 〈word〉 with spaces or another delimiters, you can write something different than “()”
as 〈brackets〉 parameter.

10



2 For Users DocBy.TEX

2.10 Namespaces
The namespace is a rule by which the short name of documented word is transformed to long

name when \dl is used. You can set the namespace by the command \namespace. If the command
\dl〈word〉 is used inside the \namespace {〈pre-text〉#1〈post-text〉}...\endnamespace. environment then
the short name is 〈word〉 and the long name is 〈pre-text〉〈word〉〈post-text〉. All occurrences of 〈word〉
are transformed to the long name inside the namespace environment. Outside of this environment the
occurrence of short name 〈word〉 is treated as no \dl command is used. For example each word declared
as \dl〈word〉 inside \namespace {#1//uff}...\endnamespace environment is transformed to the long
name “〈word〉//uff” and the occurrences of 〈word〉 inside this environment is hyperlinked and pointed
to the place where \dl〈word〉 is used. Outside of this environment only sequences 〈word〉//uff are
hyperlinked.

The namespace is undefined out of \namespace...\endnamespace environment thus the \dl
command cannot be used here. The \module command declares namespace #1./〈modulename〉 thus
you can use \dl command for local functions and variables used in current module.

The long names are printed in the footnotes and in the index. The index is sorted by the long
names alphabetically. The table of contents uses short names.

An example about namespaces follows:

\namespace {ju::#1} %% namespace "ju" is set
The word \dl aha is declared here.
The word "aha" is hyperlinked to the place of its declaration.
The word "ju::aha" is hyperlinked too.
\endnamespace
\namespace {wow::#1} %% namespace "wow" is set
The word \dl aha is declared here again.
The word "aha" points to the declaration inside "wow".
\endnamespace %% namespace off
The word "aha" is inactive here but the words
"ju::aha" and "wow::aha" points to the right places.

The \namespace...\endnamespace environments can be nested. The inner environment have to
have another namespace than the outside environment. These environments work globally independent
of the \bgroup and \egroup. The \endnamespace command used outside of all namespace environments
does nothing. You needn’t to close these environments before \bye command.

2.11 The Application Level of the Documentation
You can write the documentation to users of your code. For example the rules of the usage

of functions are documented here (API) without codes of these functions. Suppose that you want to
document the “inside behavior” of these functions by presenting their codes in the same document. The
documented 〈word〉 (a function name) can point to two different places in your documentation in such
case: API documentation and CODE documentation.

The place with the function code (detail documentation) is located by \dg command (or simi-
lar). The second place where the word is documented only for users without code can be declared by
\api{〈word〉}. This command inserts the invisible mark only, the destination of links. The table of
contents mentions the word and points to this place. The list of pages with the occurrences of the word
(in the index and in footnotes) contains one underlined page number. This is the page where \api
command is used. Of course, the \api{〈word〉} command is not sufficient to including the word to the
index. You need use the \dg command (in another place of the document) too.

The word declared by \api command are printed in the index with the \apitext prefix. The
implicit value of \apitext macro is the special right arrow. You can see it in the index and in the table of
contents in this document. The \api{\nb api} is used here but the code of \api macro is documented
in section 5.9.

You can reference the place marked by \api{〈word〉} by \cite[+〈word〉]. This macro expands
to the page number where the \api{〈word〉} is used. For example the \cite[+\nb api] expands to 11
in this document.

If there exist the API destination declared by \api command then the red word printed in the
\dg place is hyperlinked and it points to the API destination. Typically, the occurrence of this word

11



2 For Users DocBy.TEX

is hyperlinked here with the \dg place as a destination. It means we have these two destinations cross
hyperlinked.

2.12 Title, Parts, Sections, Subsections
Sections starts by \sec 〈Section Name〉\par command. Each section can include subsections

started by the command \subsec 〈Subsection Name〉\par. Of course, the \par separator can be replaced
by empty line (see the example in section 2.1). Sections and subsections are numbered automatically.

One or more sections can form a “part” which is started by \part 〈Part Name〉\par command.
Parts are labeled by letters A, B, C, . . . and they are printed more noticeable in table of contents
than sections. The \part command does not reset the section numbering. It means that sections are
numbered from one in the whole document, no matter if the document is divided into parts.

The \module 〈modulename〉 command creates a new section Module 〈modulename〉, creates
namespace and includes the 〈modulename〉.d file. You can change this default behavior, see sections 3.1
and 3.3.

The \title〈Name〉\par command prints the title of the document by huge font in rectangle. If
the \projectversion macro is defined then it expands to the text printed in the right upper corner of
the rectangle by small font. The word “version” precedes. If our project has no version then you can
define (for example):

\def\projectversion{\the\day. \the\month. \the\year}

The \author〈text〉\par command centers the 〈text〉 i the line and prints it bold. The common
meaning is name(s) of the author(s).

The headline is created at each page of the document with the current section (from left) and title
of the document (from right). You can redefine the right headline by new definition of the \headtitle
macro.

The optional parameter 〈label〉 in square brackets can be used with \sec and \subsec commands.
The parameters looks like: \sec [〈label〉] 〈Section Name〉\par. If the 〈label〉 parameter is used then
you can reference this place by \cite[〈label〉]. This macro prints the number of referenced (sub)section
and acts like hyperlink.

You can disable the transport of 〈(Sub)Section Name〉 into table of contents by \savetocfalse
used before \sec or \subsec command. This section has no number. The macro \emptynumber expands
instead of number printing. This macro is set to empty by default. The \savetocfalse command
influences only first \sec or \subsec command.

2.13 Hyperlinks, References
The destination of the hyperlink and/or reference have to be marked by 〈label〉. This can be

done by optional parameter of the \sec or \subsec command (see the section 2.12) or by the command
\label[〈label〉] itself. You can make labels to line numbers of inserted code too (see the section 2.7).
All labels have to be unambiguous in whole document (independent of their type).

The command \pgref[〈label〉] expands to the number of the page where the 〈label〉 is. The
command \numref[〈label〉] expands to the result which depends on the type of the destination:

• sections number if the destination is the section
• the pair 〈secnumber〉.〈subsecnumber〉 if the destination is the subsection.
• the number of the line if the destination is the line in the printed code
• empty if the destination is marked by \label command.

Both macros \pgref and \numref expand to the texts mentioned above without any more pro-
cessing. It means that the printed text is not treated as hyperlink.

You can use the command \ilink [〈label〉]{〈text〉} in order to create the hyperlink in PDF mode.
This macro prints the 〈text〉 in blue color and it is treated as hyperlink to the destination specified by
〈label〉. For example the command \cite[〈label〉] does the same as \ilink[〈label〉]{\numref[〈label〉]}.
The real macro \cite executes a test if the \numref[〈label〉] is empty and prints the \pgref in such
case.

If the 〈label〉 is not declared then \pgref{〈label〉} and \numref{〈label〉} have no destination. The
\pgref expands to the text -1000 and \numref is empty in such case. These macros work on expand

12



3 For Advanced Users DocBy.TEX

processor level thus no warning message is implemented here. On the other hand the \cite command
implements warnings. See the code of \cite on the page 36 for more detail.

The \module 〈modulename〉 command creates the section with the label “m:〈modulename〉”.
You can reference it by:

\def\refmodule[#1]{\ilink[m:#1]{\tt#1}}

The \refmodule{〈modulename〉} defined in the example above prints 〈modulename〉 and creates it as
hyperlink. For example \refmodule[base] prints the word “base” in blue typewriter font and creates
it as the hyperlink to the begin of the section “Module base” if this section is crated by \module base 
command.

The \dg, \dgn and \dgh commands perform the command \label[@〈word〉] internally and the
\dl, \dln and \dlh perform the command \label[@〈longname〉] internally. The 〈longname〉 is the long
name of the 〈word〉 in context of the current namespace. For example, you can reference these places by
\link[@〈word〉]{The 〈word〉 documented on the page~\pgref[@〈word〉]}.

The \api{〈word〉} command executes \label[+〈word〉] internally. It means that you can refer-
ence this place by \ilink[+〈word〉]{API: 〈word〉} for instance.

No more automatic numbering is processed by DocBy.TEX. Only numbers of sections, subsections
and line numbers of the printed code. If you want to create the numbers of figures, publications etc.
Then you have to write your own macros. You can use the \labeltext[〈label〉]{〈text〉} command in
such case. This macro expands it parameters immediately and inserts invisible hyperlink destination
into typeset material in horizontal mode. Then macro \numref{〈label〉} expands to 〈text〉 in the next
pass of the TEX run. Example: we define the macro \bib[label] which inserts the destination marked
by the 〈label〉. The hyperlink with the number of the book can be created by \cite[b:〈label〉].

\newcount\bibnum
\def\bib [#1]{\par\advance\bibnum by1 \indent

\llap{[\the\bibnum] }\labeltext[b:#1]{[\the\bibnum]}\ignorespaces}

2.14 Pictures Inserting
The command \ifig 〈width〉 〈picname〉 inserts the picture into your document. The picture

have to be prepared in the file fig/〈picname〉.eps (if DVI mode is used) and in the file fig/〈picname〉.pdf
(if PDF mode is used). You can use another directory for pictures than fig/ – this name is stored in
the \figdir macro and you can redefine it. The 〈width〉 parameter is the ratio of the width of inserted
picture to the \hsize (unit-less). The inserted picture is placed to left side with the paragraph inden-
tation. For example \ifig 0.5 foo inserts the picture prom foo.pdf (in PDF mode). The picture is
scaled that its width is one half of the width of the printed text.

If you have the picture in eps format and you need to convert it to pdf then you can use:

ps2pdf -dEPSCrop 〈picname〉.eps

2.15 Items
The list of items are surrounded by \begitems and \enditems commands. The text is printed

with one indent space (\parindent) more in this environment. These environments can be nested. Each
item is started by \item 〈mark〉 . The 〈mark〉 is printed left from the text. If the 〈mark〉 is the star
(*) then it is changed to the bullet. You can write \item \the\itemno) if you want to print numbered
items. The \itemno register counts from one in each \begitems. . .\enditems environment.

The \item macro is redefined only inside \begitems. . .\enditems environment. If you wish to
use the plainTEX macro \item then just don’t use \begitems and \enditems commands.

3 For Advanced Users
The definitions of basis macros of DocBy.TEX are mentioned in this section. The user can change

these definitions if he need different behavior of DocBy.TEX than default one. For example, user docu-
ments different language than C and he/she redefine the \docsuffix macro or he/she redefine the code
of \module and \ins commands completely.

13



3 For Advanced Users DocBy.TEX

3.1 Internal Names
The \doindex command creates new section with the name “Index”. The sections with names

“Table Of Contents” or “Module” are inserted when table of contents is generated or \module command
is executed. The word “version” is prefixed when the number of version is printed (if \projectverion
is used). The text >> PART is inserted into bookmarks by \part command. These texts are defined in
the following macros: \titindex, \tittoc, \titmodule, \titversion and \opartname.

docby.tex
25: \def\titmodule{Module}

26: \def\tittoc{Table of Contents}

27: \def\titindex{Index}

28: \def\titversion{version }

29: \def\opartname{>> PART}

30: \ifx\chyph\undefined

31: \else \ifnum\language=0

32: \else

33: \def\titmodule{Modul}

34: \def\tittoc{Obsah}

35: \def\titindex{Rejstřík}

36: \def\titversion{verze }

37: \def\opartname{>> CAST}

38: \fi \fi

Note that different names are used by default when plain or csplain format is processed. But user
can redefine these macros independently of the used format.

3.2 Hooks
Some more elaborate macros (\begtt, quotes, \ifirst, \inext, \doindex, \dotoc) execute so

called “hook” before processing of more code. These hooks are macros and they are empty by default.
docby.tex

42: \def\begtthook{}

43: \def\quotehook{}

44: \def\indexhook{}

45: \def\tochook{}

46: \def\bookmarkshook{}

47: \def\outputhook{}

The \begtthook macro is inserted after begin of the group and after all catcodes are set by default
before text inside the environment \begtt...\endtt is processed. The \quotehook macro is inserted
after begin of the group and after all cactodes are set by default before the text inside \begtt...\endtt
is processed. The \indexhook macro is inserted by \doindex command after new section name is printed
and before two column printing is activated. You can insert the notice to index here (see the index of
this document for example). The \tochook macro is inserted by \dotoc command after new section
name is inserted and before first line of table of contents is printed. The \bookmarkshook macro is
inserted inside the group at the begin of bookmarks processing. You can set the different expansion
of macros used in bookmarks here. For example \def\mylogo{MyProgram(R)}. Moreover, if you say
\let\cnvbookmark=\lowercase here then all characters is converted to lower case in bookmarks. This
is done by \lowercase primitive thus the different meaning of special characters can be set by \lccode.
I use it for removing of accents because accents in bookmarks are interpreted by most PDF viewers
wrongly. The \outputhook macro is inserted at the begin of the output routine. We recommend to set
chosen macros to \relax meaning in order to they are not expanded in .ref file.

Examples:

\def\quotehook{\obeyspaces} % normal spaces inside "..."
\def\quotehook{\langleactive} % <text> is changed to 〈text〉
\def\begtthook{\mubytein=1} % auto-hyperlinks between \begtt...\endtt
\def\begtthook{\setsmallprinting} % \begtt...\endtt printed by small font
\def\begtthook{\catcode‘\!=0} % !commands can be used in \begtt...\endtt
\def\indexhook{The special index with such and such properties follows.}

\titindex: 14, 39 \tittoc: 14, 39 \titmodule: 14–15 \titversion: 14, 19 \opartname: 14, 40
\begtthook: 14, 28 \quotehook: 14, 44 \indexhook: 14, 39 \tochook: 14, 39
\bookmarkshook: 14, 40 \outputhook: 14–15, 34

14



3 For Advanced Users DocBy.TEX

\def\outputhook{\let\mylogo=\relax} % \mylogo is not expaded in *.ref

3.3 The Commands \module and \ins
The user documentation of these commands is in section 2.1. The \module 〈file〉 command

reads the file with the name 〈file〉\docsuffix where \docsuffix macro includes the suffix including the
period.

docby.tex
51: \def\docsuffix {.d} % implicit filename extension (for \module command)

52: \def\module #1 {\endnamespace\namespace{##1./#1}\sec [m:#1] \titmodule\space #1 \par

53: \def\modulename{#1} \input #1\docsuffix\relax

54: }

The \module command inserts the name of the file (without the suffix) into the auxiliary macro
\modulename. This macro is used by the \ins 〈extension〉 〈text〉 command.

docby.tex
55: \def\ins #1 #2 {\ifirst {\modulename.#1}{//: #2}{//:}{--}}

3.4 The Comments Turned to Green Color
The \ifirst and \inext commands recognise C comments in the form //..〈eol〉 and /* .. */.

These comments are printed in green color. You can disable this behavior by \noactive〈string〉 com-
mand. You can set a new type of comments by \setlinecomment {〈string〉} command. These commands
will be turned to green color from 〈sting〉 to end of line. These commands work globally. For example

\noactive{/*}\noactive{*/}\noactive{//}
\setlinecomment{\percent} \noactive{\nb\percent}}

activates comments used in TEX sources and PostScript language.
You can set the comments of the type /*...*/ by the command \setlrcomment {〈left〉}{〈right〉}.
If you are interested what these macros do internally then you can read the following part of this

section.
docby.tex

59: \ifx\mubyte\undefined

60: \def\setlinecomment#1{}

61: \def\setlrcomment#1#2{}

62: \else

63: \def\setlinecomment#1{\mubyte \linecomment ##0 #1\endmubyte}

64: \def\setlrcomment#1#2{\mubyte \leftcomment ##0 #1\endmubyte

65: \mubyte \rightcomment #2\endmubyte \gdef\rightcomment{#2\returntoBlack}}

66: \fi

These macros are empty in no-enc mode. When encTEX is detected, they write information to
encTEX table by \mubyte...\endmubyte primitive commands.

The \linecomment a \leftcomment commands are inserted by encTEX before each occurrence of
declared character sequence. These commands sets the current color to green:

docby.tex
68: \def\linecomment {\let\Black=\Green \Green}

69: \def\leftcomment {\global\let\Black=\Green \Green}

On the other hand, the \rightcomment command have to switch off the green color after the
declared sequence is detected. Thus encTEX cancels the detected sequence and \rightcomment command
returns this sequence back. After the returned sequence the \returntoBlack command set the current
color to black.

docby.tex
71: \def\returntoBlack {\global\let\Black=\oriBlack \Black}

Each line of listing is started by \Black switch. So, the green comments to the end of line work.
But the green comment can be interrupted by the pair \Blue...\Black (see line 51 in previous section).
In this case the \Black command have the \Green meaning so it returns to the green color. Next line is
started with original \Black switch because each line is printed inside its own TEX group.

\module: 4, 10–15 \docsuffix: 13, 15 \modulename: 15 \ins: 4, 7, 13, 15
\setlinecomment: 15–16 \setlrcomment: 15–16 \linecomment: 15, 26, 44 \leftcomment: 15, 26,
44 \rightcomment: 15 \returntoBlack: 15–16, 26, 44

15



4 For Designers DocBy.TEX

The comments of type /* ... */ can affect more lines. So more lines have to be green and we
re-define \Black to \Green globally. The lines starts with \Black command with \Green meaning in
such case. The \returntoBlack returns to the original \Black switch globally.

DocBy.TEX initializes the comments by the rules of C language:
docby.tex

73: \setlinecomment{//} \setlrcomment{/*}{*/}

4 For Designers
The documentation of macros which influence the look of the document follows. You can redefine

it in order to change the design of your document. I mean that it is better to write simply and good
documented macros for one purpose than the complicated macros with many parameters. You can simply
use them or redefine them.

The main processing of docbytex is hidden in more complicated macros described in section 5.
This differentiation of levels gives possibility to the designers to concentrate to design-like problems and
not to drown in complicated recursive loops etc. of internal macros.

There are two different version of design macros: for pdfTEX mode and for DVI mode (without
pdfTEX). This is the reason why you can see that the listings of following macros are often started by
the text \ifx\pdfoutput\undefined.

4.1 Parameters and Auxiliary Macros
The parameters \hsize and \vsize are unchanged in DocBy.TEX. User can set his/her own

preferred values. If they are unchanged by user then the default values from plain (usable for letter
format) or csplain (usable for A4) are used.

DocBy.TEX sets new value for \parindent because we need more space here for colourised squares
in section names.

docby.tex
77: \parindent=30pt

The \nwidth dimen is used like “narrowed \hsize” for many situations: the width of headline,
footline and for title text.

docby.tex
79: \newdimen\nwidth \nwidth=\hsize \advance\nwidth by-2\parindent

The glue at the bottom of each page is set by \raggedbottom macro (defined in plainTEX). More-
over, the \exhyphenpenalty=10000 is set in order to deny the linebreaking after dashes (like pp 11–13).

docby.tex
81: \raggedbottom

82: \exhyphenpenalty=10000

The fonts \bbf, \bbbf, \btt, \ttsmall, \rmsmall, \itsmall and \partfont are loaded here.
docby.tex

84: \font\bbf=csb10 at12pt

85: \font\bbbf=csb10 at14.4pt

86: \font\btt=cstt12

87: \font\ttsmall=cstt8

88: \font\rmsmall=csr8

89: \font\itsmall=csti8

90: \font\partfont=csb10 at80pt

The \setsmallprinting macro sets the typewriter font and prepares the \ttstrut of appropriate
size and activates the line printing without vertical spaces between them by \offinterlineskip macro.
The \parskip value is set to -1pt in order to a small overlaps of struts guarantee that no dashes-artifacts
occur at background of listings. The \setnormalprinting is similar.

\hsize: 13, 16, 22, 33, 39, 43 \vsize: 33, 43–44 \nwidth: 16, 19, 33 \bbf: 16, 18
\bbbf: 16, 18–19, 21 \btt: 16, 18 \ttsmall: 16–17, 20–22, 33 \rmsmall: 16–17, 19–20, 33
\itsmall: 16–17 \partfont: 16, 18 \setsmallprinting: 14, 17, 21–22 \ttstrut: 17, 21–22
\setnormalprinting: 17, 22

16



4 For Designers DocBy.TEX

docby.tex
92: \def\setsmallprinting{\ttsmall \let\it=\itsmall \let\rm=\rmsmall

93: \def\ttstrut{\vrule height8pt depth3pt width0pt}%

94: \offinterlineskip \parskip=-1pt\relax

95: }

96: \def\setnormalprinting{\tt \baselineskip=0pt \hfuzz=4em

97: \def\ttstrut{\vrule height10pt depth3pt width0pt}%

98: \offinterlineskip \parskip=-1pt\relax

99: }

The design is projected only with the following colors: \Blue, \Red, \Brown, \Green, \Yellow a
\Black. If you need other colors you can define more similar macros.

docby.tex
101: \ifx\pdfoutput\undefined

102: \def\setcmykcolor#1{}

103: \else

104: \def\setcmykcolor#1{\special{PDF:#1 k}}

105: \fi

106: \def\Blue{\setcmykcolor{0.9 0.9 0.1 0}}

107: \def\Red{\setcmykcolor{0.1 0.9 0.9 0}}

108: \def\Brown{\setcmykcolor{0 0.85 0.87 0.5}}

109: \def\Green{\setcmykcolor{0.9 0.1 0.9 0.2}}

110: \def\Yellow{\setcmykcolor{0.0 0.0 0.3 0.03}}

111: \def\Black{\setcmykcolor{0 0 0 1}}

112: \let\oriBlack=\Black

All colors are defined by \setcmykcolor macro which is empty in DVI mode but a proper
\special is used in PDFTEX mode. It means that the commands \Brown etc. can be used in DVI
mode too, but they do nothing in that mode. The \oriBlack macro switches to black color and this
macro is never changed. On the other hand, the \Black macro can be redefined in special environments
and we need to return to real black color by \oriBlack macro at the end of such environment.

The \rectangle {〈height〉}{〈depth〉}{〈width〉}{〈contents〉} command creates a rectangle with
specified dimensions and contents. This rectangle is filled by yellow color in PDF mode. The same
rectangle has only black outline in DVI mode. Attention: the 〈contents〉 have to be prefixed by color
switch otherwise it is invisible in PDF version (yellow on yellow). The \rectangle macro returns back
to black color after rectangle is created.

docby.tex
114: \ifx\pdfoutput\undefined

115: \def\rectangle#1#2#3#4{\vbox to0pt{\vss\hrule\kern-.3pt

116: \hbox to#3{\vrule height#1 depth#2\hss#4\hss\vrule}%

117: \kern-.3pt\hrule\kern-#2\kern-.1pt}}

118: \else

119: \def\rectangle#1#2#3#4{\vbox to0pt{\vss\hbox to#3{%

120: \rlap{\Yellow \vrule height#1 depth#2 width#3}%

121: \hss#4\Black\hss}\kern-#2}}

122: \fi

The DocBy.TEX logo is typeset by \docbytex macro.
docby.tex

124: \def\docbytex {\leavevmode\hbox{DocBy}.\TeX}

4.2 Sections and Subsections
The \printsec {〈sec-title〉} and \printsecbelow macros are invoked from \sec macro. Their

main task is to print the title of the section. You can redefine these implicit macros. You can concern
with design of section here and you need not solve other problems (reference to the TOC, numbers,
running heads etc.) which are hidden in \sec macro.

The following rules are mandatory: The vertical mode have to be initialized at the begin of the
\printsec macro. Then you can insert vertical space and then you can insert the text of title. The
\makelinks macro have to be inserted in the horizontal mode here. It creates the aim of hyperlinks.
The \par command have to be the last command of your \printsec macro. No more vertical spaces

\Blue: 15, 17, 20, 36 \Red: 17, 20, 37 \Brown: 17–19, 21–22 \Green: 15–17, 36
\Yellow: 17, 19–20, 22 \Black: 15–20, 22, 27, 33, 36–37 \setcmykcolor: 17
\oriBlack: 15, 17, 20, 27 \rectangle: 17–21 \docbytex: 17, 34, 40 \printsec: 17–18, 34–35
\printsecbelow: 18, 34–35

17



4 For Designers DocBy.TEX

can be inserted here. The main \sec macro inserts another elements below the text and then it call the
second macro \printsecbelow. The vertical space below the text is inserted from this macro (probably
protected by \noberak. The right order of elements in TEX’s vertical list is: “box, (whatsit, mark, etc.),
penalty, glue”. The objects mentioned in the brace here is inserted by \sec macro. You can insert the
“box” (by \printsec macro) and the “penalty+glue” (by \printsecbelow macro).

There are numerical registers \secnum and \subsecnum which store the actual (sub)section num-
ber. Moreover you can use the \ifsavetoc test. This is true if the title is printed in table of contents.
If it is false then you can use \emptynumber macro instead of \the\secnum.

The \seclabel includes the 〈label〉 of processed section or it is empty. You can use it for draft
printing is you wish to see the labels (in margins, for example). DocBy.TEX doesn’t implement this
feature by default.

docby.tex
128: \def\printsec #1{\par

129: \removelastskip\bigskip\medskip

130: \noindent \makelinks

131: \rectangle{16pt}{9pt}{25pt}{\Brown\bbbf\ifsavetoc\the\secnum\else\emptynumber\fi}%

132: \kern5pt{\bbbf\let\_=\subori #1}\par

133: }

134: \def\printsecbelow {\nobreak\medskip}

The \printsubsec and \printsubsecbelow macros does the same things but subsection is
printed. They are invoked by \subsec macro.

docby.tex
136: \def\printsubsec #1{\par

137: \removelastskip\bigskip

138: \noindent \makelinks

139: \vbox to0pt{\vss

140: \rectangle{16pt}{9pt}{25pt}{\Brown\bf

141: \ifsavetoc\the\secnum.\the\subsecnum\else\emptynumber\fi}\kern-5pt}%

142: \kern5pt{\bbf\let\_=\subori \let\tt=\btt #1}\par

143: }

144: \def\printsubsecbelow {\nobreak\smallskip}

The \printpart macro prints the title of part which is enumerated by uppercase letters. The
\printpartbelow macro inserts the vertical space below the part title.

docby.tex
146: \def\printpart #1{\par

147: \removelastskip\bigskip\medskip

148: \noindent {\linkskip=60pt\makelinks}%

149: \rectangle{16pt}{9pt}{25pt}{}%

150: \kern-20pt{\Brown\partfont\thepart\Black}\kern10pt{\bbbf #1}\par

151: }

152: \def\printpartbelow {\nobreak\bigskip}

The \emptynumber is normally used if \savetocfalse. It prints nothing by default.
docby.tex

154: \def\emptynumber{}

4.3 The Title, The Author
The \title 〈title〉\par macro reads its parameter 〈title〉 by auxiliary macro \secparam which

ignores the possible space at the end of this parameter. This parameter is stored into \sectitle tokenlist
and internal macro \iititle is invoked. This macro works in two different modes (DVI and PDF). The
〈title〉 is stored into \headtitle macro (in both modes) only if the \headtitle is empty, it means that
it it not initialized by user. Then \iititle suppresses the headline printing on the current page by the
\nohedaline command.

docby.tex
158: \def\title{\def\tmpA{title}\futurelet\nextchar\secparam}

159: \ifx\pdfoutput\undefined

160: \def\iititle {\par

161: \ifx\headtitle\empty\edef\headtitle{\the\sectitle}\fi

162: \noheadline

\printsubsec: 18, 35 \printsubsecbelow: 18, 35 \printpart: 18, 35 \printpartbelow: 18, 35
\emptynumber: 12, 18, 35 \title: 12, 4, 18–19 \iititle: 18–19

18



4 For Designers DocBy.TEX

163: \ifx\projectversion\empty \else

164: \line{\hss\rmsmall\titversion\projectversion}\nobreak\medskip\fi

165: \centerline{\bbbf \let\_=\subori\the\sectitle}\nobreak\medskip}

166: \else

167: \def\iititle {\par

168: \ifx\headtitle\empty\edef\headtitle{\the\sectitle}\fi

169: \noheadline

170: \indent\rlap{\rectangle{25pt}{15pt}{\nwidth}{\Black\let\_=\subori\bbbf\the\sectitle}}%

171: \ifx\projectversion\empty \else

172: \hbox to\nwidth{\hss

173: \raise26pt\hbox{\Brown\rmsmall\titversion\projectversion\Black}}\fi

174: \par\nobreak\vskip15pt}

175: \fi

The \iititle macro expands to normal \centerline in DVI mode. On the other hand it creates
the yellow rectangle of the width \nwidth in PDF mode.

If the \projectversion macro is undefined then its default value is empty.
docby.tex

177: \ifx\projectversion\undefined \def\projectversion{}\fi

The \author 〈author〉\par does the same in both modes: prints the 〈author〉 text on the center
by boldface font.

docby.tex
179: \def\author #1\par{\centerline{\bf #1\unskip}\smallskip}

4.4 Headers and Footers
DocBy.TEX doesn’t change the output routine defined by plainTEX. It uses the standard plainTEX’s

macros \headline and \footline when the design of headers and footers need to be changed.
The default design doesn’t do any difference between left page and right page because we suppose

that the document will be read on monitor and may be printed without duplex.
The \footline prints the page number on center with \rectangle.

docby.tex
183: \footline={\hss\rectangle{8pt}{2pt}{25pt}{\tenrm\Black\folio}\hss}

The text of \headline is changed during document is processed. It includes only \normalhead
macro by default but if the \noheadline command is used then \headline changes its content until one
page is printed.

docby.tex
185: \headline={\normalhead}

186: \def\normalhead {\savepglink \let\_=\subori

187: \vbox to0pt{\vss \baselineskip=7pt \lineskiplimit=0pt

188: \line{\indent\Black\tenit \firstmark \hss \headtitle\indent}

189: \line{\indent\Yellow\xleaders\headlinebox\hfil\indent\Black}}}

The \normalhead macro stores page link by \savepglink and creates the header by nested
\vbox/\hboxes. The name of section (\firstmark) is printed from the left side and the constant
\headtitle is printed on the right side.

The \noheadline macro sets \headline to the temporary macro text which stores page link and
does the change of \headline to its default value. This setting is global because we are inside the output
routine.

docby.tex
191: \def\noheadline {\global\headline={\savepglink\hfil\global\headline={\normalhead}}}

The \headtile macro prints the text in right side of header. It is empty by default but it is
changed by \title command to the name of the document. User can define its value manually.

docby.tex
193: \ifx\headtitle\undefined \def\headtitle {}\fi

The auxiliary macro \headlinebox prints the empty rectangle in DVI mode and solid yellow
rectangle in PDF mode. It is used on the line 189 for creating of square filled line in the header.

\projectversion: 12, 19 \author: 12, 4, 19 \footline: 19 \headline: 19, 36 \normalhead: 19
\noheadline: 18–19 \headtile: 40 \headlinebox: 19–20

19



4 For Designers DocBy.TEX

docby.tex
195: \ifx\pdfoutput\undefined

196: \def\headlinebox{\hbox{\kern2pt\rectangle{4pt}{0pt}{4pt}{}\kern2pt}}

197: \else

198: \def\headlinebox{\hbox{\kern2pt\vrule height4pt depth0pt width4pt\kern2pt}}

199: \fi

4.5 Printing of the Hyperlink Destinations and Footnote References
The hyperlink destination created by \dg or \dl macros are printed highlighted in order to reader

can easy find it. The printing is processed by the macro \printdg {〈text〉}{〈word〉}{〈brackets〉} where
the parameters are the same as in \iidg macro described in 2.9 section.

Only one parameter 〈word〉 is printed by default. The 〈word〉 is printed in rectangle in DVI mode
or it is printed in red on solid yellow rectangle in PDF mode.

docby.tex
203: \ifx\pdfoutput\undefined

204: \def\printdg#1#2#3{\leavevmode\hbox{\kern-.6pt

205: \vbox{\hrule\hbox{\vrule height8.5pt depth2.5pt \kern.2pt

206: \tt#2\kern.2pt\vrule}\hrule\kern-2.9pt}\kern-.6pt}}

207: \else

208: \def\printdg#1#2#3{\leavevmode \setbox0=\hbox{\tt#2}%

209: \Yellow\rlap{\vrule height8.7pt depth2.7pt width\wd0}%

210: \printdginside{#2}{\box0}}

211: \fi

The red text is printed by auxiliary macro \printdginside. This macro prints only in red color
if does not exist the \api destination. On the other hand it prints in red by \ilink macro if the \api
destination does exist.

docby.tex
213: \def\printdginside#1#2{\ifnum\pgref[+#1]>-1 {\let\Blue=\Red \ilink[+#1]{#2}}%

214: \else \Red#2\relax\Black\fi}

One item below the footnote rule is printed by \printfnote {〈text〉}{〈word〉}{〈brackets〉} macro
(the parameters from \iidg macro are here). The 〈word〉 is printed in red, other information is printed
in black.

The \specfootnote {〈text〉} macro is used here. It sends the 〈text〉 to the special footnote. The
\pgref[+〈word〉] returns the page number where the \api destination of the 〈word〉 is or it returns
−1000 if \api destination does not exist. This number is stored in \apinum and if it is non-negative
number then it is printed as first page number underlined. The list of page numbers where the 〈word〉
occurs is printed by \listofpages{〈word〉} macro. This macro ignores the number of page where \api
destination is. The empty list of page numbers is detected by zero width of \box0.

docby.tex
216: \def\printfnote #1#2#3#4{%

217: \specfootnote{{\let\Black=\oriBlack \ttsmall #1\Red #4\Black#3\rmsmall

218: \apinum=\pgref[+#2]\relax

219: \ifnum\apinum>-1 :~\lower1.4pt\vbox{\hbox{\pglink\apinum}\kern1pt\hrule}\fi

220: \undef{w:#2}\iftrue \setbox0=\hbox{}\else \dgnum=-1 \setbox0=\hbox{\listofpages{#2}}\fi

221: \ifdim\wd0=0pt \else

222: \ifnum\apinum>-1 , \else :~\fi

223: \unhbox0

224: \fi}}%

225: }

4.6 The Index and Table of Contents Item
The \ptocline {〈number〉}{〈text〉}{〈pageno〉} command prints the item about a section or a

part in table of contents. The \ptocsubline {〈number〉}{〈text〉}{〈pageno〉} does the same with the
item about subsection. There is no substantial differences between these commands in DocBy.TEX’s
default design, only one \indent more in \ptocsubline:

\printdg: 20, 31–32 \printdginside: 20, 32 \printfnote: 20, 31–32 \ptocline: 21, 38
\ptocsubline: 20–21, 38

20



4 For Designers DocBy.TEX

docby.tex
229: \def\ptocline #1#2#3{%

230: \if^^X#1^^X\advance\partnum by1 \medskip \fi

231: \line{\rectangle{8pt}{1pt}{25pt}{%

232: \if^^X#1^^X\ilink[sec:\thepart]{\bbbf \thepart}\else\ilink[sec:#1]{#1}\fi}\kern5pt

233: {\bf\let\_=\subori #2}\mydotfill\pglink#3}}

234: \def\ptocsubline #1#2#3{%

235: \line{\indent\rectangle{8pt}{1pt}{25pt}{\ilink[sec:#1]{#1}}\kern5pt

236: \let\_=\subori #2\mydotfill\pglink#3}}

237: \def\mydotfill{\leaders\hbox to5pt{\hss.\hss}\hfil}

The \mydotfill command prints the dots in table of contents so they are aligned.
The \ptocentry 〈type〉{〈word〉}{〈s-word〉} prints one item about documented word in table of

contents. If it is \api occurrence of the 〈word〉 then 〈type〉=+ else 〈type〉=@. The 〈s-word〉 parameter is
empty but if the 〈word〉 is declared by \dl then 〈s-word〉 includes a short variant of the word and 〈word〉
includes a long variant of it. We use long variant for hyperlinking and short variant for printing.

docby.tex
239: \def\ptocentry#1#2#3{\ifhmode,\hskip 7pt plus 20pt minus 3pt \fi

240: \noindent \hbox{\ttsmall \if+#1\apitext\fi \ilink[#1#2]{\ifx^^X#3^^X#2\else#3\fi}}%

241: \nobreak\myldots\pglink\pgref[#1#2]\relax

242: }

243: \def\myldots{\leaders\hbox to5pt{\hss.\hss}\hskip20pt\relax}

If someone want to print 〈text〉 before 〈word〉 or 〈braces〉 after 〈word〉 then he can use a control
sequence \csname-〈word〉\endcsname. The example follows in the next macro \printindexentry.

The \myldots command creates three dots, they are aligned wit another dots in table of contents.
The \printindexentry {〈word〉} macro prints an item of the 〈word〉 in the index. It starts

in vertical mode inside column, prints the item and it have to switch to vertical mode back by \par
command.

docby.tex
245: \def\printindexentry #1{%

246: \expandafter \expandafter\expandafter \separeright \csname-#1\endcsname\end

247: \apinum=\pgref[+#1]\relax

248: \leavevmode\llap{\ttsmall \ifnum\apinum>-1 \apitext\fi\tmpa}%

249: {\tt \ilink[@#1]{#1}\tmpb}: {\bf\pglink\pgref[@#1]}%

250: \ifnum\apinum>-1 , $\underline{\pglink\apinum}$\fi

251: \dgnum=\pgref[@#1]\relax

252: \undef{w:#1}\iftrue \setbox0=\hbox{}\else \setbox0=\hbox{\it\listofpages{#1}}\fi

253: \ifdim\wd0=0pt \else, \unhbox0 \fi

254: \hangindent=2\parindent \hangafter=1 \par

255: }

256: \def\separeright #1\right#2\end{\def\tmpa{#1}\def\tmpb{#2}}

The \separeright macro stores the 〈text〉 before the declared word into the \tmpa and the
〈braces〉 into the \tmpb. The control sequence \csname-〈word〉\endcsname is prepared by the \refdg
macro. This sequence expands to 〈text〉\right〈braces〉. The page number with the \dg (or \dl) oc-
currence of the word is obtained by \pgref[@〈slovo〉] and the page number with \api occurrence is
obtained by \pgref[+〈word〉]. This page number is underlined if it does exist.

4.7 The Source Code Listing
The \ifirst and \inext macros print the required part of source code. They start with \bgroup

and calls the \printiabove macro. Each line is printed by \printiline {〈number〉}{〈text〉} macro.
They finish by calling of \printibelow macro and \egroup command at the end. The designer can
define these three macros. The default design makes differences between DVI and PDF mode.

docby.tex
261: \ifx\pdfoutput\undefined

262: \def\printiabove{\line{\leaders\specrule\hfill \kern2pt

263: {\ttsmall \Brown\inputfilename}\kern2pt \specrule width\parindent}\nobreak

264: \setsmallprinting}

265: \def\printibelow{\vskip2pt\hrule\medskip}

266: \def\specrule{\vrule height 2pt depth-1.6pt }

267: \def\printiline#1#2{\noindent\ttstrut

\mydotfill: 21 \ptocentry: 21, 37, 39–40 \myldots: 21 \printindexentry: 21, 39–40
\separeright: 21 \printiabove: 21–22, 26 \printiline: 21–22, 27–28 \printibelow: 21–22, 27

21



4 For Designers DocBy.TEX

268: \hbox to\parindent{\hss#1:\kern.5em}{#2\par}\penalty11 }

269: \else

270: \def\printiabove{\smallskip \setsmallprinting}

271: \def\printibelow{\medskip}

272: \def\printiline #1#2{\noindent

273: \rlap{\Yellow \ttstrut width\hsize}%

274: \ifx\isnameprinted\undefined

275: \rlap{\line{\hss \raise8.5pt

276: \hbox{\ttsmall \Brown \vrule height5pt width0pt \inputfilename}}}%

277: \let\isnameprinted=\relax

278: \fi

279: \hbox to\parindent{\hss\Brown#1:\Black\kern.5em}{#2\par}\penalty11 }

280: \fi

The line above with file name is printed in DVI mode by \leaders primitive and \specrule
macro. The line below listing is simple. In the PDF mode, we set \setsmallprinting at the start of
listing and insert a small vertical space.

The \printline macro sets the horizontal mode and strut is inserted here (in DVI mode) followed
by box with number of the line. The interline penalty is 11 in the listing. In PDF mode, the solid yellow
rectangle is printed by \rlap. We need to print the filename above the listing after the yellow rectangle
of the first line is printed. That is the reason why there is the test if first line of the listing is printed
by \isnameprinted control sequence. It is \undefined by default but if the filename is printed then
\isnameprinted is set to \relax (see lines 275 and 276). After the \egroup (inserted at the end of
\ifirst or \inext) the default value of \isnameprinted is restored. This value is \undefined.

4.8 The \begtt ... \endtt Printing
The \begtt establishes a new group and calls the \printvabove macro. Next, each printed line is

processed by \printvline {〈number〉}{〈text〉} macro. At the end, the \printvbelow macro is invoked
and the group is closed.

The implicit design doesn’t print the numbers of lines. We draw only lines above and below in
DVI mode. Moreover, we draw yellow lines in PDF mode and the yellow lines left and right in each line
by \rlap macro.

docby.tex
284: \ifx\pdfoutput\undefined

285: \def\printvabove{\smallskip\hrule\nobreak\smallskip\setnormalprinting}

286: \def\printvbelow{\nobreak\smallskip\hrule\smallskip}

287: \def\printvline#1#2{\hbox{\ttstrut\indent#2}\penalty12 }

288: \else

289: \def\printvabove{\medskip\Yellow\hrule height2pt \setnormalprinting\nobreak}

290: \def\printvbelow{\Yellow\hrule height2pt \Black\medskip}

291: \def\printvline#1#2{\noindent

292: \rlap{\hbox to\hsize{\Yellow\ttstrut width25pt\hfil

293: \vrule width25pt\Black}}\hbox{\indent#2}\par\penalty12 }

294: \fi

4.9 Pictures
The pictures are inserted in order to align their left side with the paragraph indent. The implicit

design sets the \parindent to sufficient big value that the result is quite good. The width of the picture
\figwidth is calculated as \hsize minus \parindent.

docby.tex
298: \newdimen\figwidth \figwidth=\hsize \advance\figwidth by-\parindent

DVI mode: The macro \ifig 〈width ratio〉 〈filename〉 inserts the picture from 〈filename〉.eps
usig the epsf.tex macro package. PDF mode: The macro inserts the picture from 〈filename〉.pdf by
pdfTEX primitive commands \pdfximage, \pdfrefximage, \pdflastximage.

docby.tex
300: \ifx\pdfoutput\undefined

301: \input epsf

302: \def\ifig #1 #2 {\bigskip\indent

\specrule: 21 \isnameprinted: 22 \printvabove: 22, 28 \printvline: 22, 28
\printvbelow: 22, 28–29 \figwidth: 22–23 \ifig: 13, 22–23

22



5 For TEX Wizards DocBy.TEX

303: \hbox{\epsfxsize=#1\figwidth\epsfbox{\figdir#2.eps}}\bigskip}

304: \else

305: \def\ifig #1 #2 {\bigskip\indent

306: \hbox{\pdfximage width#1\figwidth {\figdir#2.pdf}%

307: \pdfrefximage\pdflastximage}\bigskip}

308: \fi

309: \def\figdir{fig/}

The \figdir includes the directory with the pictures.

4.10 Items
The macros for items mentioned in text are simple. The \begitems macro starts the items

environment and the \enditems ends it. The \itemno register counts the number of the current item
and the \dbtitem 〈mark〉 is the global variant of \item macro. The \item macro is the same as in
plainTEX by default but it changes its behavior inside \begitems. . .\enditems environment.

docby.tex
313: \newcount\itemno

314: \def\begitems{\medskip\begingroup\advance\leftskip by\parindent \let\item=\dbtitem}

315: \def\dbtitem #1 {\par\advance\itemno by1 \noindent\llap{\ifx*#1$\bullet$\else#1\fi\kern3pt}}

316: \def\enditems{\medskip\endgroup}

5 For TEX Wizards
The implementation of DocBy.TEX is documented here. All internal macros of DocBy.TEX are

listed and commented in this section. May be, it is not so good idea to redefine these macros unless the
reader want to do his own DocBy.TEX.

5.1 Auxiliary Macros
The \dbtwarning macro prints warning on the terminal:

docby.tex
321: \def\dbtwarning#1{\immediate\write16{DocBy.TeX WARNING: #1.}}

The macros \defsec {〈text〉}, \edefsec {〈text〉} and \undef {〈text〉} define control sequence
\csname〈text〉\endcsname.

docby.tex
323: \def\defsec#1{\expandafter\def\csname#1\endcsname}

324: \def\edefsec#1{\expandafter\edef\csname#1\endcsname}

325: \def\undef#1\iftrue{\expandafter\ifx\csname#1\endcsname\relax}

You can use the \undef macro in following way:

\undef{〈text〉}\iftrue 〈sequence is undefined〉 \else 〈sequence is defined〉 \fi

You have to write \iftrue after \undef{〈text〉}. There is a practical reason of this concept: you
can use \undef test nested inside another \if...\fi conditional.

The \nb macro expands to normal backslash of catcode 12. You can use it if you need to search
text with this character. The active tabulator is defined as eight spaces and auxiliary macros \obrace,
\cbrace, \percent, \inchquote are defined here.

docby.tex
327: {\catcode‘\^^I=\active \gdef^^I{\space\space\space\space\space\space\space\space}

328: \catcode‘\|=0 \catcode‘\\=12 |gdef|nb{\}}

329: \bgroup

330: \catcode‘\[=1 \catcode‘]=2 \catcode‘\{=12 \catcode‘\}=12 \catcode‘\%=12

331: \gdef\obrace[{] \gdef\cbrace[}] \gdef\percent[%]

332: \egroup

333: \def\inchquote{"}

The \softinput macro inputs the specified file only if this file exists. Else the warning is printed.

\figdir: 13, 23 \begitems: 13, 23 \enditems: 13, 23 \itemno: 13, 23 \dbtitem: 23
\item: 13, 23 \dbtwarning: 23–27, 32, 36–37, 39 \defsec: 23, 28, 30, 36–37, 40, 42
\edefsec: 23, 30, 37–38, 40, 42 \undef: 20–21, 23, 25, 28–30, 32, 36, 40 \nb: 8, 11, 15, 30,
34, 36, 39–40 \obrace: 8, 23 \cbrace: 8, 23 \percent: 8, 15, 23 \inchquote: 8, 23
\softinput: 24

23



5 For TEX Wizards DocBy.TEX

docby.tex
335: \def\softinput #1 {\let\next=\relax \openin\infile=#1

336: \ifeof\infile \dbtwarning{The file #1 does not exist, run me again}

337: \else \closein\infile \def\next{\input #1 }\fi

338: \next}

The \setverb macro sets the cactodes of all special characters to normal (12).
docby.tex

340: \def\setverb{\def\do##1{\catcode‘##1=12}\dospecials}

5.2 Initialization
DocBy.TEX prints on the terminal:

docby.tex
344: \immediate\write16{This is DocBy.TeX, version \dbtversion, modes:

345: \ifx\mubyte\undefined NO\fi enc+%

346: \ifx\pdfoutput\undefined DVI\else PDF\fi+%

347: \ifnum\language=0 ENG\else CS\fi}

The \dbtversion macro expands to the version of the DocBy.TEX. It is defined at the begin of
the file docby.tex. If new version is released then this definition will be changed.

docby.tex
4: \def\dbtversion {May 2014} % version of DocBy.TeX

If (pdf)csplain is used then the UTF-8 input is activated by encTEX. Unfortunately this isn’t
compatible with DocBy.TEX which uses encTEX by different way. We need to deactivate the UTF-8
encoding input. If you need to write something in different language than English you need to use the
8bit encoding (ISO-8859-2 is usable for Czech when (pdf)csplain is used).

docby.tex
21: \input utf8off \csname clearmubyte\endcsname

The encTEX mode is detected and initialized:
docby.tex

351: \ifx\mubyte\undefined % encTeX ??

352: \dbtwarning{encTeX is not detected}

353: \message{ \space The documented words will be not recognized in source code.}

354: \message{ \space Use pdfetex -ini -enc format.ini to make

355: your format with encTeX support.}

356: \csname newcount\endcsname \mubytein

357: \def\enctextable#1#2{}

358: \def\noactive#1{}

359: \else

360: \def\enctextable#1#2{%

361: \def\tmp ##1,#1,##2\end{\ifx^^X##2^^X}%

362: \expandafter \tmp \owordbuffer ,#1,\end

363: \expandafter \mubyte \csname.#1\endcsname #1\endmubyte \fi

364: \expandafter \gdef \csname.#1\endcsname {#2}%

365: }

366: \def\noactive#1{\mubyte \emptysec ##0 #1\endmubyte}

367: \def\emptysec{}

368: \fi

The \enctextable {〈word〉}{〈macrobody〉} command inserts new item into encTEX table with
the key 〈word〉. If this key is found by encTEX then it is removed from input stream and replaced by the
\.〈word〉 macro which expands to 〈macrobody〉. For example after \dg foo the key foo is activated for
encTEXby \enctextable{foo}{\sword{foo}} command. If the foo is found in the input stream then
it is replaced by \sword{foo}.

The \enctextable doesn’t store the key to the encTEX table if it is included in the list of
prohibited words stored in \owordbuffer. The words are separated by comma here. They are prohibited
because of \onlyactive. The \enctextable defines only the \.〈word〉 sequence in such situation.

The \noactive {〈text〉} macro inserts the 〈text〉 as a key in the encTEX table. This key is not
removed from input but the \emptysec control sequence is inserted before it. EncTEX is not able to
remove the key from its table, it is only able to rewrite the behavior of the transformation process if the
key is found. If we need to deactivate some key by \noactive then we rewrite its behavior.

\setverb: 24, 26, 28, 44 \dbtversion: 24 \enctextable: 24–25, 29, 31–32, 39
\owordbuffer: 24–25 \noactive: 6, 15, 24–25, 29, 32 \emptysec: 24

24



5 For TEX Wizards DocBy.TEX

All occurrences of documented words 〈word〉 is transformed to \sword {〈word〉} by encTEX. The
hyperlink is created by this macro:

docby.tex
370: \def\sword#1{\ilink[@#1]{#1}\write\reffile{\string\refuseword{#1}{\the\pageno}}}

The \onlyactive {〈before〉}{〈word〉}{〈post〉} command inserts the 〈word〉 into the list of pro-
hibited words \owordbuffer (only if this word isn’t here already). EncTEX changes all occurrences
of 〈before〉〈word〉〈post〉 to \oword{〈before〉}{〈word〉}{〈post〉}. Moreover, the 〈word〉 is deactivated by
\noactive (may be it was activated when \reffile is read). The \oword {〈before〉}{〈word〉}{〈post〉}
command prints 〈before〉 by normal font, then runs \.〈word〉 if it is defined (else prints 〈word〉 normally).
Finally, it prints 〈post〉 by normal font.

docby.tex
372: \def\onlyactive #1#2#3{\enctextable{#1#2#3}{\oword{#1}{#2}{#3}}%

373: \def\tmp ##1,#2,##2\end{\ifx^^X##2^^X}%

374: \expandafter \tmp \owordbuffer ,#2,\end

375: \addtext #2,\to\owordbuffer \noactive{#2}\fi}

376: \def\owordbuffer{,}

377: \def\oword#1#2#3{#1\undef{.#2}\iftrue #2\else\csname.#2\endcsname\fi #3}

The DVI/PDF mode is initialized here:
docby.tex

379: \ifx\pdfoutput\undefined

380: \dbtwarning{pdfTeX is not detected}

381: \message{ \space The document will be without colors and hyperlinks.}

382: \message{ \space Use pdfTeX engine, it means: pdfetex command, for example. }

383: \else

384: \pdfoutput=1

385: \fi

5.3 The \ifirst, \inext, \ilabel Macros
The \lineno register is the number of the line, \ttlineno register is the number of the line in the

\begtt...\endtt environment. We use \ifcontinue for loop controlling and \ifskipping for setting
\skippingfalse and \skippingtrue.

docby.tex
389: \newcount\lineno

390: \newcount\ttlineno

391: \newif\ifcontinue

392: \newif\ifskipping \skippingtrue

393: \newread\infile

The \ifirst {〈filename〉}{〈from〉}{〈to〉}{〈why〉} command analyses its parameter 〈why〉 by
\readiparamwhy and tries to open the file 〈filename〉 for reading by \openin primitive. If it is un-
successful then a warning is printed. Else the 〈filename〉 is stored to \inputfilename macro and other
parameters are analyzed by \scaniparam. The 〈from〉 resp. 〈to〉 parameter is stored to \tmpa resp.
\tmpb macro. The 〈num〉 parameter from \count=〈num〉 is stored to \tmpA and \tmbB macros. The
command \insinternal is invoked with expanded parameters 〈from〉 and 〈to〉. The expansion is done
via \edefed macro \act.

docby.tex
395: \def\ifirst #1#2#3#4{\par\readiparamwhy#4..\end

396: \openin\infile=#1 \global\lineno=0

397: \ifeof\infile

398: \dbtwarning {I am not able to open the file "#1" to reading}

399: \else

400: \xdef\inputfilename{#1}

401: \scaniparam #2^^X\tmpa\tmpA \scaniparam #3^^X\tmpb\tmpB

402: {\let~=\space \def\empty{^^B^^E}\let\end=\relax \uccode‘\~=‘\"\uppercase{\let~}"%

403: \noswords \xdef\act{\noexpand\insinternal {\tmpa}{\tmpb}}}\act

404: \fi

405: }

\sword: 24–26, 31–32, 39 \onlyactive: 7, 24–25 \oword: 25 \lineno: 8, 25, 27–28
\ttlineno: 25, 29 \ifcontinue: 25–27, 37 \ifskipping: 25, 27–28 \skippingfalse: 8, 9, 28
\skippingtrue: 8, 25, 28 \ifirst: 7, 8–9, 14–15, 21–22, 25–26 \inputfilename: 21–22, 25–27

25



5 For TEX Wizards DocBy.TEX

The \inext {〈from〉}{〈to〉}{〈why〉} macro does the analogical work as the \ifirst. The only
difference is that the 〈filename〉 is not open by \openin. We suppose that the file is opened already. We
are not sure that this is true and we check it by test of contents of the \inputfilename macro.

docby.tex
406: \def\inext #1#2#3{\par\readiparamwhy#3..\end

407: \ifx\inputfilename\undefined

408: \dbtwarning {use \string\ifirst\space before using of \string\inext}

409: \else

410: \ifeof\infile

411: \dbtwarning {the file "\inputfilename" is completely read}

412: \else

413: \scaniparam #1^^X\tmpa\tmpA \scaniparam #2^^X\tmpb\tmpB

414: {\let~=\space \def\empty{^^B^^E}\let\end=\relax \uccode‘\~=‘\"\uppercase{\let~}"%

415: \noswords \xdef\act{\noexpand\insinternal{\tmpa}{\tmpb}}}\act

416: \fi\fi

417: }

When the parameters 〈from〉 and 〈to〉 are expanded then we want to suppress all expansions of
macros automatically inserted by encTEX. This work is done by \noswords macro.

docby.tex
418: \def\noswords{\def\sword##1{##1}\def\lword##1{##1}\def\fword##1##2##3{##2}%

419: \let\flword=\fword \def\leftcomment{}\def\returntoBlack{}\def\linecomment{}}

The \readiparamwhy reads + or - characters from 〈why〉 parameter and stores them to \startline
and \stopline control sequences.

docby.tex
421: \def\readiparamwhy#1#2#3\end{\let\startline=#1\relax\let\stopline=#2\relax}

The \scaniparam 〈param〉^^X〈out〉〈outnum〉 reads 〈param〉 in the form \count=〈num〉 〈text〉. It
stores the 〈text〉 to the 〈out〉 control sequence and 〈num〉 to the 〈outnum〉 control sequence. The prefix
\count=〈num〉 is optional thus we need to do a little more work to scan the parameters. This work is
realized by auxiliary macros \scaniparamA, \scaniparamB, \scaniparamC. If the prefix \count=〈num〉
is missing then 〈outnum〉 is one.

docby.tex
423: \def\scaniparam{\futurelet\nextchar\scaniparamA}

424: \def\scaniparamA{\ifx\nextchar\count \expandafter\scaniparamB

425: \else \def\tmp{\scaniparamB \count=1 }\expandafter\tmp

426: \fi}

427: \def\scaniparamB \count{\afterassignment\scaniparamC\tempnum}

428: \def\scaniparamC #1^^X#2#3{\def#2{#1}\edef#3{\the\tempnum}}

The main work (inserting of source code) is done by the macro \insinternal with parameters
{〈from〉}{〈to〉}.

docby.tex
430: \def\insinternal #1#2{%

431: \bgroup

432: \printiabove % graficke zpracovani zacatku

433: \setverb \catcode‘\"=12 \catcode‘\^^M=9 \catcode‘\^^I=\active

434: \mubytein=1 \obeyspaces \continuetrue \tempnum=\tmpA\relax

435: \def\testline##1#1##2\end{\ifx^^Y##2^^Y\else \nocontinue \fi}%

436: \ifx^^X#1^^X\def\testline##1\end{\nocontinue}\fi

437: \loop % preskakovani radku

438: \ifeof\infile \returninsinternal{Text "#1" not found (\string\count=\the\tempnum)}{}\fi

439: \readnewline

440: \expandafter \testline \expandafter^^B\etext ^^E#1\end

441: \ifcontinue \repeat

442: \let\lastline=\empty

443: \continuetrue \tempnum=\tmpB\relax

444: \def\testline##1#2##2\end{\ifx^^Y##2^^Y\else \nocontinue \fi}%

445: \ifx^^X#2^^X\def\testline##1\end{\nocontinue}\fi

446: \ifx+\startline \printilineA

447: \expandafter \testline \expandafter ^^B\etext ^^E#2\end

448: \ifcontinue\else\returninsinternal{}\fi

\inext: 7, 8–9, 14–15, 21–22, 26 \noswords: 25–28 \readiparamwhy: 25–26 \startline: 26–27
\stopline: 26–27 \scaniparam: 25–26 \scaniparamA: 26 \scaniparamB: 26 \scaniparamC: 26
\insinternal: 25–27

26



5 For TEX Wizards DocBy.TEX

449: \readnewline

450: \else

451: \readnewline

452: \ifskipping\ifx\text\empty \readnewline \fi\fi

453: \fi

454: \loop % pretisk radku

455: \expandafter \testline \expandafter ^^B\etext ^^E#2\end

456: \ifcontinue

457: \printilineA

458: \ifeof\infile \returninsinternal{}\fi

459: \readnewline \repeat

460: \ifx+\stopline \printilineA

461: \ifx\lastline\relax \else \printiline{\lastline}{}\relax\fi

462: \fi

463: \global\let\Black=\oriBlack % pokud jsme skoncili vypis uvnitr komentare

464: \printibelow % graficke zpracovani konce

465: \egroup\gdef\ilabellist{}\Black

466: }

The \isinternal macro has two main loops. First one (from line 437 to 441) reads the lines from
input source file (by the macro \readnewline). Each line is stored to \etext macro. This loop finds
the occurrence of the 〈from〉 parameter and nothing is printed.

The second loop (lines from 454 to 459) reads lines from input source file and searches the occur-
rence of the 〈to〉 parameter. The lines are printed by the \printilineA macro.

The preliminary work is done before first loop is started: the catcode, fonts and \mubytein
setting. The \testline macro is defined here with the 〈from〉 separator. We will test the existence of
〈from〉 parameter by it. More flexible definition of the \testline macro is used here because of special
form of 〈from〉 parameter (see user documentation in the 2.6 section). The end of loop is controlled by
the \ifcontinue condition. The \nocontinue command runs the \continuefalse but not always. If
\count>1, it means \tempnum>1, then the command only decreases the \tempnum by 1.

docby.tex
467: \def\nocontinue{\advance\tempnum by-1 \ifnum\tempnum<1 \continuefalse \fi}

The similar preliminary work is done before second loop. The \testline macro is defined again
with the 〈to〉 separator. The searching process is similar as in the first loop.

The \ifx+\startline is a test if user want to print the first line. The \ifx+\stopline is a test
if user want to print the last line.

The \ilabellist macro tests the occurrence of labels declared by the \ilabel command.
The macro \returninsinternal {〈text〉}{〈possible fi〉}{〈ignore〉} is more tricky. It is inserted

when the end of the source file is occurred. The macro leaves its loop by the 〈ignore〉 parameter which
is separated by the \printibelow text. Thus the part of the \insinternal macro is skipped to the
line 464. The inserted conditionals have to by closed properly: the \fis are inserted here from the second
parameter. The first parameter 〈text〉 includes the warning text if the warning have to be printed to the
log file. If the 〈text〉 parameter is empty, no warning is printed.

docby.tex
469: \def\returninsinternal #1#2#3\printibelow{%

470: \ifx^^X#1^^X\else

471: \dbtwarning{#1 in file \inputfilename}\fi

472: #2\fi\printibelow

473: }

The \readnewline is simple:
docby.tex

474: \def\readnewline {\read\infile to\text \global\advance\lineno by1\relax

475: {\noswords \xdef\etext{\text}}}

We are working with the line of source file in two versions: noexpanded line in the \text macro
and expanded line in the \etext macro. The \noswords macro before expanding of the line guarantees
that the \etext does not include control sequences created by encTEX(we need not these sequences when
we are testing the occurrence of 〈from〉 or 〈to〉 parameter). The noexpanded \text version of the line
(including the encTEXs sequences) is used when the line is printed.

\testline: 26–27 \nocontinue: 26–27 \returninsinternal: 26–27 \readnewline: 26–27

27



5 For TEX Wizards DocBy.TEX

The more intelligence is implemented in the \printilineA macro: the empty lines are printed
with delay if the nonempty line follows. We need it because the last empty line have to be unprinted if
\skippingtrue. The \lastline macro has three states: \empty (at the begin), \relax (after the line
is printed), 〈line number〉 (if the previous line is empty).

docby.tex
477: \def\printilineA {%

478: \ifskipping\else \ifx\text\empty \def\text{ }\fi\fi % trik pro pripad \skippingfalse

479: \ifx\text\empty

480: \ifx\lastline\empty % nacten prvni prazdny radek

481: \let\lastline=\relax

482: \else % nacten pozdejsi prazdny radek

483: \ifx\lastline\relax \else \printiline{\lastline}{}\relax\fi

484: \edef\lastline{\the\lineno}%

485: \fi

486: \else % nacten plny radek

487: \ifx\lastline\empty \let\lastline=\relax \fi

488: \ifx\lastline\relax \else \printiline{\lastline}{}\relax\fi

489: \printiline{\the\lineno}{\text}\relax

490: \let\lastline=\relax

491: \fi \ilabellist

492: }

The \ilabellist macro stores all declarations from \ilabel [〈label〉]{〈text〉} commands. The
empty value of \ilabellist have to be set as default.

docby.tex
493: \def\ilabellist {}

494: \def\ilabel [#1]#2{{\noswords\edef\act{\noexpand\ilabelee{#1}{#2}}\expandafter}\act}

495: \def\ilabelee #1#2{\expandafter\def\expandafter\ilabellist\expandafter{%

496: \ilabellist \expandafter\testilabel\etext\end{#1}{#2}}

497: }

The \ilabel macro first expands its parameters (by the \act macro) and calls the internal
\ilabelee macro. This macro adds the following text to the \ilabellist:

\expandafter\testilabel\etext\end{〈label〉}{〈text〉}

The \testilabel 〈line〉\end{〈label〉}{〈text〉} command defines the temporary \tmp macro with
the 〈text〉 separator in order to test if the 〈text〉 is included in 〈line〉. If it is true then the aim of the
reference is registered by the \labeltext command.

docby.tex
498: \def\testilabel#1\end#2#3{%

499: \def\tmp ##1#3##2\end{\ifx^^Y##2^^Y\else

500: \undef{d:#2}\iftrue \defsec{d:#2}{}\labeltext[#2]{\the\lineno}\fi\fi}

501: \tmp^^B#1^^E#3\end

502: }

5.4 Commands \begtt, \endtt
The \begtt and \endtt macros are described in “TEXbook inside out” (the book in Czech lan-

guage) in pages 27–30. The \startverb macro reads the following text separated by the word \endtt.
This text is divided into lines by ^^M character of catcode 12. The loop is started by the \runttloop
macro and the text is separated into lines. Each line is processed by the \printvline macro. The
\endttloop is performed at the end of the loop. The final work is done here (the \printvbelow macro
and the end of the group) and the next token is scanned by \scannexttoken macro. If this token isn’t
\par then the following text is prefixed by \noindent. It means that \begtt. . .\endtt is “inside” the
paragraph.

docby.tex
506: \def\begtt {\bgroup\printvabove

507: \setverb \catcode‘\"=12 \catcode‘\^^M=12 \obeyspaces

508: \begtthook\relax \startverb}

509: {\catcode‘\|=0 \catcode‘\^^M=12 \catcode‘\\=12 %

\printilineA: 26–28 \lastline: 26–28 \ilabellist: 27–28 \ilabel: 9, 27–28 \ilabelee: 28
\testilabel: 28 \begtt: 9, 14, 22, 25, 28–29 \startverb: 28 \runttloop \endttloop: 29
\scannexttoken: 29

28



5 For TEX Wizards DocBy.TEX

510: |gdef|startverb^^M#1\endtt{|runttloop#1|end^^M}%

511: |gdef|runttloop#1^^M{|ifx|end#1 |expandafter|endttloop%

512: |else|global|advance|ttlineno by1 %

513: |printvline{|the|ttlineno}{#1}|relax|expandafter|runttloop|fi}} %

514: \def\endttloop#1{\printvbelow\egroup\futurelet\nextchar\scannexttoken}

515: \long\def\scannexttoken{\ifx\nextchar\par\else\noindent\fi}

The number of line globally incremented in \begtt. . .\endtt is stored in \ttlineno register. You
can set this register to zero at each begin of section (for example).

5.5 The Namespaces
Each name space is connected to its own \namespacemacro. This is a macro with one parameter

which is declared by \namespace{〈macro body〉}. The \namespacemacro is empty by default.
docby.tex

519: \def\namespacemacro#1{}

We need to set a label to each name space. The label is the text expanded by \namespacemacro{@!}
and the mark 〈nslabel〉 is used for such label in this documentation. There is a little risk that the 〈nslabel〉
is ambiguous but I hope that this situation will not occur.

Each name space have to know all local words declared in it in order to the occurrence of this local
word can be referenced to the \dl declaration; the \dl declaration can be used after first occurrence of
such word. The encTEX tables have to be initialised with all local words at the start of the name space.
The original state of these tables have to be restored at the end of the name space. We cannot wait to
the \dl command but we need to use the \reffile file. It means that the name spaces are inactive in
the first TEX’s run.

The macro \ns:〈nslabel〉 includes the list of all locally declared words in the namespace 〈nslabel〉
after the \reffile file is read. The list has the following format:

\locword{〈word1 〉}\locword{〈word2 〉}\locword{〈word3 〉}...

Because the encTEX table setting is global, we define all namespace macros globally too. This is
the reason why \namespace...\endnamespace is independent of groups in TEX.

The \namespacemacro is defined at the start of the \namespace command. The original value
of the \namespacemacro is stored to the \no:〈nslabel〉 macro in order we are able to restore this value
at the end of the \namespace...\endnamespace environment. Next we define the macro \locword so
that the encTEX table is set after invoking of the \ns:〈nslabel〉. The \locword macro stores the original
meanings of redefined control sequences first.

docby.tex
521: \def\namespace #1{%

522: \let\tmp=\namespacemacro

523: \gdef\namespacemacro##1{#1}%

524: \global\expandafter\let\csname no:\namespacemacro{@!}\endcsname\tmp

525: \ewrite{\string\refns{\namespacemacro{@!}}}%

526: \def\locword##1{%

527: \global\expandafter\let

528: \csname\namespacemacro{@!},##1\expandafter\endcsname\csname.##1\endcsname

529: \enctextable{##1}{\lword{##1}}}%

530: \csname ns:\namespacemacro{@!}\endcsname

531: }

The \endnamespace command redefines the \locword macro so that the original meaning of
redefined sequences are restored. If the original meaning is “undefined” we need to store the \nword to
the encTEX table in order to there is no possibility to clear the item from encTEX table definitely. The
original value of the \namespacemacro is restored by the \no:〈nslabel〉 macro.

docby.tex
532: \def\endnamespace{\if^^X\namespacemacro{@!}^^X\else

533: \def\locword##1{%

534: \global\expandafter\let

535: \csname.##1\expandafter\endcsname\csname\namespacemacro{@!},##1\endcsname

536: \undef{.##1}\iftrue \noactive{##1}\fi}%

537: \csname ns:\namespacemacro{@!}\endcsname

\namespacemacro: 29–30 \namespace: 11, 15, 29 \locword: 29, 39 \endnamespace: 11, 15, 29

29



5 For TEX Wizards DocBy.TEX

538: \ewrite{\string\refnsend{\namespacemacro{@!}}}%

539: \global\expandafter\let\expandafter\namespacemacro\csname no:\namespacemacro{@!}\endcsname

540: \fi

541: }

These macros used the \ewrite sequence which writes the text to the \reffile with delay (in
output routine) but the expansion is done immediately. But the \nb control sequence is not expanded.

docby.tex
542: \def\ewrite#1{{\let\nb=\relax \edef\act{\write\reffile{#1}}\act}}

EncTEX stores the control sequence \.〈word〉 instead local 〈word〉 at the start of each name space.
The \.〈word〉 macro expands to \lword{〈word〉}. If the local word occurs the \lword works as follows:

docby.tex
544: \def\lword#1{\genlongword\tmp{#1}\ilink[@\tmp]{#1}%

545: \ewrite{\string\refuseword{\tmp}{\noexpand\the\pageno}}}

546: \def\genlongword#1#2{\expandafter\def\expandafter#1\expandafter{\namespacemacro{#2}}}

The \genlongword 〈tmp〉{〈word〉} command creates long version of the 〈word〉 from short variant
of it and stores this log version to 〈tmp〉 macro. The occurrence of the 〈word〉 is presented by the
parameter of the \ilink command and by the long name (unambiguous) written to the \reffile. The
short variant of the word is printed.

The reading of the \reffile is controlled by \refns {〈nslabel〉} macro. This control sequence is
stored to the file at the begin of the name space. The second control sequence \refnsend {〈nslabel〉}
is stored at the end. The items of the type \refdg{〈text〉}{〈long-word〉}{〈brackets〉}{〈short-word〉}
are stored between these control sequences. We read only the items with the nonempty 〈short-word〉
parameter. These items are stored by \dl command.

docby.tex
548: \def\refns#1{\edefsec{o:#1}{\currns}

549: \edef\currns{#1}\undef{ns:\currns}\iftrue \defsec{ns:\currns}{}\fi}

550: \def\refnsend#1{\edef\currns{\csname o:#1\endcsname}}

551: \def\currns{}

The \refns macro remembers the previous 〈nslabel〉 which is stored in \currns. This value
is stored to the \o:〈new nslabel〉 and the \currns is redefined as 〈new nslabel〉. The implicit value
of the \ns:〈nslabel〉 is empty. The \refdg commands add information to the \ns:〈nslabel〉 buffer (see
lines 850–853 in section 5.9). Finally, the \refnsend command returns the \currns macro to the original
value before name space was started.

5.6 The \dg Command and Friends
The macros \dg, \dl, \dgn, \dgh, \dln, \dlh save its name to a \tmpA and then they scan

parameters by a \dgpar. Finally they run the internal version for itself \csname ii\tmpA\endcsname.
docby.tex

555: \def\dg{\def\tmpA{dg}\dgpar} \def\dgn{\def\tmpA{dgn}\dgpar} \def\dgh{\def\tmpA{dgh}\dgpar}

556: \def\dl{\def\tmpA{dl}\dgpar} \def\dln{\def\tmpA{dln}\dgpar} \def\dlh{\def\tmpA{dlh}\dgpar}

557:

558: \def\dgpar {\futurelet\nextchar\dgparA}

559: \def\dgparA {\ifx\nextchar[\def\tmp{\dparam}\else\def\tmp{\dparam[]}\fi\tmp}

The previous macros prepare the reading of optional parameter. The main work is done by the
\dparam macro.

docby.tex
561: \def\dparam [#1]#2 {%

562: \def\printbrackets{}%

563: \ifx^^X#2^^X\nextdparam{#1}\fi

564: \def\tmpa{#2}\def\tmpb{}%

565: \varparam,\tmpa, \varparam.\tmpa. \varparam;\tmpa; \varparam:\tmpa:

566: \expandafter\managebrackets\tmpa()\end

567: {\let\nb=\relax

568: \edef\act{\expandafter\noexpand \csname ii\tmpA\endcsname{#1}{\tmpa}{\printbrackets}}%

\ewrite: 29–30, 32, 35 \lword: 26, 29–30 \genlongword: 30, 32 \refns: 29–30, 38
\refnsend: 30, 38 \currns: 30, 39 \dg: 9, 6–7, 10–13, 20–21, 24, 30–32, 38–39
\dl: 9, 10–11, 13, 20–21, 29–32, 38–39 \dgn: 9, 10, 13, 30 \dgh: 9, 10, 13, 30 \dln: 9, 10, 13, 30
\dlh: 9, 10, 13, 30 \dgpar: 30 \dparam: 30–31

30



5 For TEX Wizards DocBy.TEX

569: \expandafter}\act

570: \tmpb \if|\expandafter\ignoretwo\tmpA|\expandafter\maybespace\fi

571: }

572: \def\nextdparam#1#2\maybespace\fi{\fi\dparam[#1 ]}

If there is a space after closed bracket ] then the #2 parameter is empty (it is separated by space).
The \dparam macro runs again in such case (by \nextdparam macro which scans the rest of parameters
of the \dparam). The space is inserted inside the braces before the \dparam is run again. Now, we can
separate the #2 parameter (it means the 〈word〉) to the part before the first comma or period or colon
or semicolon and to the second part with the rest. The first part is stored to \tmpa and the second part
(including the separator) is stored to \tmpb. This work is done by the macro \varparam:

docby.tex
574: \def\varparam#1{\def\tmp ##1#1##2 {\def\tmpa{##1}\if^^X##2^^X\else

575: \expandafter\gobblelast\tmpb\end#1##2\fi}%

576: \expandafter\tmp}

577: \def\gobblelast#1\end#2{\def\tmp##1#2{\def\tmpb{#2##1#1}}\tmp}

The macro \varparam〈separ〉 defines the temporary macro \tmp#1〈separ〉#2 which is run by
\tmp〈word〉〈separ〉 . If the #2 is empty then the explicitly written 〈separ〉 was used as separator and
the 〈word〉 does not include the 〈separ〉. The \tmpa still includes the 〈word〉 in such case. On the other
hand, if the 〈word〉 includes 〈separ〉 then we need to store the rest after the 〈separ〉 to \tmpb including
such 〈separ〉. The #2 parameter includes 〈rest〉〈separ〉. The desired work is done by the \gobblelast
macro with the parameter 〈contents of tmpb〉\end〈separ〉〈rest〉〈separ〉. The #1 includes the 〈rest〉 and
the new \tmpb is filled up by 〈separ〉〈rest〉〈old contents of tmpb〉.

At the end of this work, we have the 〈word〉 in \tmpa but it can be followed by (). This problem
is solved by \managebrackets macro which separates these braces if they exist. The braces are stored
to \printbrackets in such case.

docby.tex
579: \def\managebrackets #1()#2\end{\def\tmpa{#1}%

580: \if|#2|\else\def\printbrackets{()}\fi}

The \maybespace macro prints the space after the contents of \tmpb only if the name of the
macro used by the user has only two letters (\dg, \dl) and the character ‘ follows.

docby.tex
582: \def\maybespace{\futurelet\tmp\domaybespace}

583: \def\domaybespace{\let\next=\space

584: \ifx\tmp‘\def\next##1{}\fi

585: \next}

The \dparam macro changes the original command \dg*, \dl* respectively to internal variant
\iidg*, \iidl* respectively. This is done on the line 568. Parameters are expanded before the internal
macro is started. Now, we’ll concentrate to the internal macros.

The \iidg macro inserts the \sword to the encTEX table (this is redundant because the same
work is done when \reffile is read by \refdg macro). Next, the \iidg macro creates the aim of the
reference in the form @〈word〉 and saves \refdg{〈text〉}{〈word〉}{〈brackets〉}{} to the \reffile. The
highlighted 〈word〉 is printed by the \printdg command and the footnote is inserted by the \printfnote
command.

docby.tex
587: \def\iidg #1#2#3{%

588: \enctextable{#2}{\sword{#2}}%

589: \label [@#2]%

590: \write\reffile{\string\refdg{#1}{#2}{#3}{}}%

591: \printdg{#1}{#2}{#3}%

592: \printfnote{#1}{#2}{#3}{#2}%

593: }

The \iidl creates the aim of the reference by \label [@〈long-word〉], writes the information
to the \reffile in the format \refdg{〈text〉}{〈long-word〉}{〈brackets〉}{〈short-word〉} and prints the
〈short-word〉 highlighted by \printdg command. It stores nothing to the encTEX table. Finally, it
inserts the footnote by \printfnote{〈text〉}{〈long-word〉}{〈braces〉}.

\nextdparam: 30–31 \varparam: 30–31 \gobblelast: 31 \managebrackets: 30–31
\printbrackets: 30–31 \maybespace: 31 \iidg: 10, 20, 31–32 \iidl: 10, 31–32

31



5 For TEX Wizards DocBy.TEX

docby.tex
594: \def\iidl #1#2#3{%

595: \genlongword\tmpB{#2}%

596: \ifx\tmpB\empty \dbtwarning{\string\dl\space#2 outside namespace, ignored}%

597: \else

598: \expandafter\label\expandafter [\expandafter @\tmpB]%

599: \ewrite{\string\refdg{#1}{\tmpB}{#3}{#2}}%

600: \printdg{#1}{#2}{#3}%

601: \printfnote{#1}{\tmpB}{#3}{#2}%

602: \fi

603: }

The \iidgh a \iidlh macros do the same work as the non-h variants. The only difference is that
they do not print the word. The \printdg is redefined locally in order to do nothing.

docby.tex
604: \def\iidgh#1#2#3{{\def\printdg##1##2##3{}\iidg{#1}{#2}{#3}}}

605: \def\iidlh#1#2#3{{\def\printdg##1##2##3{}\iidl{#1}{#2}{#3}}}

The \iidgn command redefines the \.〈word〉 macro which is inserted to the text by encTEX.
The result of the expansion will be \fword{〈text〉}{〈word〉}{〈braces〉} instead of the common result
\sword{〈word〉}.

docby.tex
607: \def\iidgn#1#2#3{\enctextable{#2}{\fword{#1}{#2}{#3}}}

The tasks of the \fword macro are: do \iidgh, print the 〈word〉 in red and return the \.〈word〉
macro to the normal state.

docby.tex
609: \def\fword#1#2#3{\iidgh{#1}{#2}{#3}\printdginside{#2}{#2}}

The \iidln macro stores the current meaning of the \.〈word〉 to the new control sequence
\;〈word〉 and redefines the \.〈word〉. The result of the expansion is \flword{〈text〉}{〈word〉}{〈braces〉}.

docby.tex
611: \def\iidln#1#2#3{%

612: \global\expandafter\let\csname;#2\expandafter\endcsname\csname.#2\endcsname

613: \enctextable{#2}{\flword{#1}{#2}{#3}}}

The tasks of the \flword macro are: do \iidlh, print 〈word〉 in red, return the original meaning
of the \.〈word〉 (from the \;〈word〉 storage). If the \;〈word〉 is undefined we need to inactivate the
\.〈word〉 macro by \nword{〈word〉} because there is no possibility to remove the item from encTEX
table.

docby.tex
615: \def\flword#1#2#3{\iidlh{#1}{#2}{#3}\printdginside{#2}{#2}%

616: \global\expandafter\let\csname.#2\expandafter\endcsname\csname;#2\endcsname

617: \undef{.#2}\iftrue \noactive{#2}\fi}

5.7 The Special Footnotes
The footnotes are placed beside each other. There are only words which are declared on this page

by \dg. Because this concept is visual incompatible with the “normal” footnotes, we deny them:
docby.tex

621: \let\footnote=\undefined

Our special footnotes use the “insert” \footins declared in plainTEX. The problem is to estimate
the vertical space of one footnote when these footnotes are beside each other. The dirty trick from the
TEXbook (to insert the inserts by percent of the width) is not used here because the pagebreaks didn’t
converge in the sequence of TEX runs. The second run gets the pagenumber lists in the footnotes but
they are not definite because of new pagebreaks. The new pagebreaks influence new lists of pagenumbers
in footnotes and the new lists influences the new pagebreaks because the widths of the footnotes are
different from previous TEX run. The oscillation is very common in such case.

I decided to work only with the average space of the footnotes common for each of them. This
coefficient is the number of the lines of the footnotes divided by the number of the footnotes. Each
footnote inserts to the vertical list the space of the line hight (10pt) multiplied by this coefficient. I need
to set the \count\footins only.

\iidgh: 10, 32 \iidlh: 10, 32 \iidgn: 10, 32 \fword: 26, 32 \iidln: 10, 32
\flword: 26, 32

32



5 For TEX Wizards DocBy.TEX

In order to guarantee the convergence of this problem, we need to fix the coefficient (mentioned
above) after second TEX run. If this coefficient is changed in each TEX run then the unconvergence is very
possible. The value of this coefficient after first TEX run is unusable because the lists of pagenumbers
in footnotes are empty at this state. The implicit coefficient is set to \count\footins=200 for first and
second TEX run (we suppose five footnotes on the one line).

The average coefficient (instead of the width of each footnote) can produce a little overfull or
underfull pages. We need to have the resource for this situation in \skip\footins and we need to use
the vertical glue above and below the footnote rule.

docby.tex
623: \skip\footins=18pt

624: \dimen\footins=\vsize

625: \count\footins=200

The \totalfoocount accumulates the number of the footnotes and the \totalfoodim accumu-
lates the total height of all lines with footnotes.

docby.tex
627: \newcount\totalfoocount

628: \newdimen\totalfoodim

The \specfootnote {〈text〉} macro inserts to the \footins one \hbox{〈text〉} and advances
\totalfoocount by one.

docby.tex
630: \def\specfootnote#1{\insert\footins\bgroup

631: \let\tt=\ttsmall \rmsmall

632: \floatingpenalty=20000 \setbox0=\hbox{#1}%

633: \ht0=10pt \dp0=0pt \box0 \egroup

634: \global\advance\totalfoocount by1

635: }

I decided to keep the output routine of plainTEX unchanged. It means that the part of this routine
which solves the footnote printing was needed to change. The \footnoterule macro of plainTEX was
redefined. The \unvbox\footins separator removes the same text from the original output routine.

docby.tex
637: \def\footnoterule \unvbox\footins {

638: \vskip-12pt \vfil

639: \moveright\parindent\vbox{\hsize=\nwidth \hrule

640: \setbox2=\vbox{\unvbox\footins \unskip

641: \setbox2=\lastbox

642: \global\setbox4=\hbox{\unhbox2}

643: \loop \unskip\unskip\unpenalty

644: \setbox2=\lastbox

645: \ifhbox2 \global\setbox4=

646: \hbox{\unhbox2 \penalty-300\hskip15pt plus5pt \unhbox4}

647: \repeat}

648: \setbox2=\vbox{\hbox{} \parskip=0pt

649: \lineskiplimit=0pt \baselineskip=10pt \raggedright \rightskip=0pt plus7em

650: \leftskip=0pt \hyphenpenalty=10000 \noindent \Black \unhbox4 }

651: \global\advance\totalfoodim by\ht2 \unvbox2}

652: }

This macro decomposes the vertical list of inserts \footins and composes them again beside each
other in horizontal box 4. The raggedright parameters are set and the box 4 is unboxed in horizontal
mode ended by \endgraf. This means that the footnotes are divided to lines. The \totalfoodim is
advanced here too.

The \bye macro (see the line 790) writes the \totalfoocount and \totalfoodim to the \reffile.
The actual average coefficient is added here too. This information is written only if the \indexbuffer
is not empty, it means that (at least) the second TEX run is in progress.

This information is read by the \refcoef {〈coef 〉}{〈number〉}{〈height〉} macro at the start of
the next TEX run. It sets the average coefficient \count\footins. The change from implicit value 200
to the new value is done only once. Next TEX runs keep this value unchanged. The auxiliary macro
\gobblerest removes the digits after decimal point including the text pt.

\totalfoocount: 33, 37 \totalfoodim: 33, 37 \specfootnote: 20, 33 \refcoef: 34, 37–38
\gobblerest: 34, 41

33



5 For TEX Wizards DocBy.TEX

docby.tex
654: \def\refcoef#1#2#3{%

655: \ifnum#1=200 % jsme na zacatku tretiho pruchodu

656: \dimen0=#3 \divide\dimen0 by #2

657: \multiply \dimen0 by100

658: \afterassignment\gobblerest \count\footins=\the\dimen0 \end

659: \else \count\footins=#1

660: \fi

661: \message{foot-coef: \the\count\footins}

662: }

663: \def\gobblerest #1\end{}

We need to suppress the expansion of some macros in output routine which are presented in
\write parameter. These macros are set to \relax meaning in output routine. In order to the headline
printing is done correctly we need to expand \makehedaline before the setting of these macros to relax
and we need to store the result of \makeheadline in a box.

docby.tex
665: \output={\setbox0=\makeheadline \def\makeheadline{\box0\nointerlineskip}

666: \let~=\relax \let\nb=\relax \let\TeX=\relax \let\docbytex=\relax \let\_=\relax \let\tt=\relax

667: \outputhook \plainoutput }

5.8 Section, Subsection, Part
The \secnum, \subsecnum, \sectitle and \ifsavetoc are declared here. \savetoc is true by

default.
docby.tex

672: \newcount\secnum

673: \newcount\subsecnum

674: \newtoks\sectitle

675: \newif\ifsavetoc \savetoctrue

There is an optional parameter [〈label〉] followed by optional (ignored) space when \sec and
\subsec macros are used. The last token of 〈title〉 can be space too and we need to ignore it. This is
reason what the macros are somewhat complicated. The name of the macro is stored to \tmpA and the
parameter scanning process is started by \secparam.

docby.tex
677: \def\sec{\def\tmpA{sec}\futurelet\nextchar\secparam}

678: \def\subsec{\def\tmpA{subsec}\futurelet\nextchar\secparam}

The \secparam reads the optional [〈label〉]. If it exists then it is stored to \seclabel macro
else \seclabel is empty. The \secparamA macro ignores optional space after the ]. The \secparamB
〈title〉\par macro reads 〈title〉. The unwanted space at the end of the 〈title〉 is removed by \nolastspace
macro which cooperates with the \setparamC macro. This macro stores the 〈title〉 (without the last
space) into \sectitle and executes \iisec or \iisubsec.

docby.tex
680: \def\secparam{\ifx\nextchar[%

681: \def\tmp[##1]{\def\seclabel{##1}\futurelet\nextchar\secparamA}%

682: \expandafter\tmp

683: \else \def\seclabel{}\expandafter\secparamB\fi

684: }

685: \def\secparamA{\expandafter\ifx\space\nextchar

686: \def\tmp{\afterassignment\secparamB\let\next= }\expandafter\tmp

687: \else \expandafter\secparamB \fi

688: }

689: \def\secparamB #1\par{\nolastspace #1^^X ^^X\end}

690: \def\nolastspace #1 ^^X#2\end{\ifx^^X#2^^X\secparamC #1\else \secparamC #1^^X\fi}

691: \def\secparamC #1^^X{\sectitle={#1}\csname ii\tmpA\endcsname}

The \iisec macro sets the \secnum and \subsecnum values and defines \makelinks where the
hyperlinks are prepared (used by \printsec). The \printsec macro prints the title of the section. The
information of the type \reftocline {〈secnum〉}{〈title〉}{〈pagenumber〉} is stored to \reffile. The
command \mark{〈secnum〉 〈title〉} is executed and the vertical space is appended by \printsecbelow.

\secnum: 18, 34–36 \subsecnum: 18, 34–35 \sectitle: 18–19, 34–35 \ifsavetoc: 18, 34–35
\sec: 12, 15, 17–18, 34, 39 \subsec: 12, 18, 34 \tmpA: 18, 25–26, 30–31, 34–35
\secparam: 18, 34–35 \seclabel: 18, 34–35 \secparamA: 34 \secparamB: 34 \nolastspace: 34
\setparamC \iisec: 34–35 \makelinks: 17–18, 35

34



5 For TEX Wizards DocBy.TEX

docby.tex
693: \def\iisec{%

694: \ifsavetoc \global\advance\secnum by1 \global\subsecnum=0 \fi

695: \edef\makelinks{%

696: \ifsavetoc \noexpand\savelink[sec:\the\secnum]\fi

697: \if^^X\seclabel^^X\else \noexpand\labeltext[\seclabel]{\the\secnum}\fi}

698: \expandafter \printsec \expandafter{\the\sectitle}% vlozi horni mezeru, text, nakonec \par

699: \ifsavetoc

700: \ewrite {\string\reftocline{\the\secnum}{\the\sectitle}{\noexpand\the\pageno}}\fi

701: \mark{\ifsavetoc \the\secnum\space \else

702: \ifx\emptynumber\empty\else\emptynumber\space\fi\fi \the\sectitle}

703: \savetoctrue \printsecbelow

704: }

The \iisubsec macro is similar as \iisec.
docby.tex

705: \def\iisubsec {%

706: \ifsavetoc \global\advance\subsecnum by1 \fi

707: \edef\makelinks{%

708: \ifsavetoc \noexpand\savelink[sec:\the\secnum.\the\subsecnum]\fi

709: \if^^X\seclabel^^X\else \noexpand\labeltext[\seclabel]{\the\secnum.\the\subsecnum}\fi}

710: \expandafter \printsubsec \expandafter{\the\sectitle}% vlozi horni mezeru, text, nakonec \par

711: \ifsavetoc \ewrite

712: {\string\reftocline{\the\secnum.\the\subsecnum}{\the\sectitle}{\noexpand\the\pageno}}\fi

713: \savetoctrue \printsubsecbelow

714: }

The \part macro uses the conversion of the \partnum register to letters. It is implemented as
\thepart macro.

docby.tex
718: \newcount\partnum

719: \def\thepart{\ifcase\partnum --\or A\or B\or C\or D\or E\or F\or G\or

720: H\or I\or J\or K\or L\or M\or N\or O\or P\or Q\or R\or S\or T\or

721: U\or V\or W\or X\or Y\or Z\else +\the\partnum\fi}

The \part macro is implemented by \iipart and it is similar to \iisec.
docby.tex

723: \def\part{\def\tmpA{part}\futurelet\nextchar\secparam}

724: \def\iipart{%

725: \ifsavetoc \global\advance\partnum by1 \fi

726: \edef\makelinks{%

727: \ifsavetoc \noexpand\savelink[sec:\thepart]\fi

728: \if^^X\seclabel^^X\else \noexpand\labeltext[\seclabel]{\thepart}\fi}

729: \expandafter \printpart \expandafter{\the\sectitle}% vlozi horni mezeru, text, nakonec \par

730: \ifsavetoc

731: \ewrite {\string\reftocline{}{\the\sectitle}{\noexpand\the\pageno}}\fi

732: \savetoctrue \printpartbelow

733: }

5.9 Links and References
The hyperlinks are solved by \savelink [〈label〉] and \iilink [〈label〉]{〈text〉} macros. The

\savelink stores the invisible destination into document raised to the height of \linkskip above base-
lineskip. The \ilink (i.e. internal link) is documented in the 2.13 section. The \savepglink saves the
numerical destination (page number) which will be used by \pglink if a page is referred.

docby.tex
737: \ifx\pdfoutput\undefined

738: \def\savelink[#1]{}

739: \def\ilink [#1]#2{#2}

740: \def\savepglink{}

741: \def\pglink{\afterassignment\dopglink\tempnum=}

742: \def\dopglink{\the\tempnum}

743: \def\ulink[#1]#2{#2}

744: \else

745: \def\savelink[#1]{\ifvmode\nointerlineskip\fi

\iisubsec: 34–35 \partnum: 21, 35, 40 \thepart: 18, 21, 35, 40 \part: 12, 14, 35 \iipart: 35
\savelink: 35–36 \iilink \linkskip: 18, 36

35



5 For TEX Wizards DocBy.TEX

746: \vbox to0pt{\def\nb{/_}\vss\pdfdest name{#1} xyz\vskip\linkskip}}

747: \def\ilink [#1]#2{{\def\nb{/_}\pdfstartlink height 9pt depth 3pt

748: attr{/Border[0 0 0]} goto name{#1}}\Blue#2\Black\pdfendlink}

749: \def\savepglink{\ifnum\pageno=1 \pdfdest name{sec::start} xyz\relax\fi % viz \bookmarks

750: \pdfdest num\pageno fitv\relax}

751: \def\pglink{\afterassignment\dopglink\tempnum=}

752: \def\dopglink{\pdfstartlink height 9pt depth 3pt

753: attr{/Border[0 0 0]} goto num\tempnum\relax\Blue\the\tempnum\Black\pdfendlink}

754: \def\ulink[#1]#2{\pdfstartlink height 9pt depth 3pt

755: user{/Border[0 0 0]/Subtype/Link/A << /Type/Action/S/URI/URI(#1)>>}\relax

756: \Green{\tt #2}\Black\pdfendlink}

757: \fi

758: \newdimen\linkskip \linkskip=12pt

These macros have special implementation for DVI and PDF modes. The blue color for links are
declared in the \ilink macro. You can change this feature by changing of this macro.

The internal labels for PDF links cannot include backslashes. That is the reason why the \nb
(normal backslash) macro is redefined here. We expect the unexpanded parameter of \savelink and
\ilink macros.

The \savepglink macro (see above) is used by \headline, this places the destination at every
page. The \pglink 〈number〉 macro reads the 〈number〉 (it is numerical register or number itself) and
creates the link to the page 〈number〉. The 〈number〉 is printed in blue color and it is clickable. The
numerical register is scanned by \afterassignment followed by \dopglink.

The line \reflabel {〈label〉}{〈text〉}{〈page〉} is stored to \jobname.ref file by \labeltext
macro. This information is read by \reflabel macro and stored in ^^X〈label〉 and ^^Y〈label〉 control
sequences. These sequences are used by \numref a \pgref. Note that if the 〈text〉 is empty (this is a
case of documented words for example) then the control sequence ^^X〈label〉 is not defined. This saves
the TEX memory for names of control sequences.

docby.tex
760: \def\reflabel #1#2#3{%

761: \undef{^^Y#1}\iftrue

762: \ifx^^X#2^^X\else\defsec{^^X#1}{#2}\fi

763: \defsec{^^Y#1}{#3}%

764: \else

765: \dbtwarning{The label [#1] is declared twice}%

766: \fi

767: }

768: \def\numref [#1]{\undef{^^X#1}\iftrue \else \csname^^X#1\endcsname\fi}

769: \def\pgref [#1]{\undef{^^Y#1}\iftrue-1000\else \csname^^Y#1\endcsname\fi}

The \labeltext [〈label〉]{〈text〉} stores the desired information as pronounced above. First,
it creates PDF link by \savelink macro and second, it stores data to .ref file. The \writelabel
[〈label〉]{〈text〉} us used for this purpose which expands to the asynchronous \write primitive (in order
to save right value of the page number). We need to expand the 〈text〉 parameter because \the\secnum
(or similar data) is here. This is a reason why the parameters are switched (the 〈label〉 parameter cannot
be expanded) and the auxiliary macro \writelabelinternal {〈text〉}{〈label〉} is used. The first part,
i.e. \writelabel{〈text〉} is expanded by \edef.

docby.tex
771: \def\labeltext[#1]#2{\savelink[#1]\writelabel[#1]{#2}}

772: \def\writelabel[#1]#2{\edef\tmp{\noexpand\writelabelinternal{#2}}\tmp{#1}}

773: \def\writelabelinternal#1#2{\write\reffile{\string\reflabel{#2}{#1}{\the\pageno}}}

The \label is defined simply as “empty” \labeltext.
docby.tex

775: \def\label[#1]{\labeltext[#1]{}}

The \cite [〈label〉] macro prints the hyperlink. The warning on the terminal is printed when
〈label〉 is misspelled. The macro is documented in 2.13 section.

\savepglink: 19, 35–36, 40 \pglink: 20–21, 35–36, 43 \dopglink: 35–36 \reflabel: 36–38
\numref: 12, 13, 36–37 \pgref: 12, 13, 20–21, 36–37 \labeltext: 13, 28, 35–36 \writelabel: 36
\writelabelinternal: 36 \label: 12, 13, 31–32, 36–37 \cite: 12, 9, 11, 13, 37

36



5 For TEX Wizards DocBy.TEX

docby.tex
777: \def\cite[#1]{\ifnum \pgref[#1]=-1000

778: \dbtwarning{label [#1] is undeclared}\Red??\Black

779: \else \edef\tmp{\numref[#1]}%

780: \ifx\tmp\empty \edef\tmp{\pgref[#1]}\fi

781: \ilink[#1]{\tmp}%

782: \fi

783: }

The links are solved in \api {〈word〉} too. This macro uses \label[+〈word〉] and saves the
〈word〉 prefixed by \refapiword to \reffile.

docby.tex
785: \def\api #1{\label[+#1]\write\reffile{\string\refapiword{#1}}}

786: \def\apitext{$\succ$}

The \apitext is printed alongside the 〈word〉 in the table of contents and the index.
When the \bye is executed, the information for \refcoef (line 790) is stored in \reffile and

the test of \reffile data consistence is processed.
docby.tex

788: \def\bye{\par\vfill\supereject

789: \ifx\indexbuffer\empty \else % jsme ve druhem a dalsim pruchodu

790: \immediate\write\reffile{\string\refcoef

791: {\the\count\footins}{\the\totalfoocount}{\the\totalfoodim}}

792: \immediate\closeout\reffile

793: \setrefchecking \continuetrue \input \jobname.ref

794: \ifcontinue \indexbuffer \relax \fi

795: \ifcontinue \ifx\text\tocbuffer \else

796: \continuefalse \dbtwarning{toc-references are inconsistent, run me again}\fi

797: \fi

798: \ifcontinue \immediate\write16{DocBy.TeX: OK, all references are consistent.}\fi

799: \fi

800: \end

801: }

The test of \reffile data consistence is done by following steps. First the \reffile is closed, then
the control sequences used in \reffile are redefined by \setrefchecking macro, then the \reffile
is read again. Now the macros from \reffile do the test itself. If inconsistency occurs then the
\continuefalse is executed. We can ask to the result of the test by \ifcontinue conditional. The
elaborate check of all automatically generated hyperlinks is done after the \reffile is read. This check
is realised by \indexbuffer. Why? See the \setrefchecking.

docby.tex
802: \def\setrefchecking{\catcode‘\"=12

803: \def\refcoef##1##2##3{}

804: \def\reflabel##1##2##3{\def\tmp{##3}\let\next=\relax

805: \expandafter\ifx\csname^^Y##1\endcsname \tmp

806: \ifx^^X##2^^X\else

807: \def\tmp{##2} \expandafter \ifx \csname^^X##1\endcsname \tmp \else

808: \continuefalse

809: \dbtwarning{text references are inconsistent, run me again}

810: \let\next=\endinput

811: \fi\fi

812: \else

813: \continuefalse

814: \dbtwarning{page references are inconsistent, run me again}

815: \let\next=\endinput

816: \fi\next}

817: \def\refuseword##1##2{\expandafter \ifx\csname -##1\endcsname \relax

818: \defsec{-##1}{##2}\else \edefsec{-##1}{\csname -##1\endcsname,##2}\fi}

819: \def\refdg##1##2##3##4{\addtext\ptocentry @{##2}{##4}\to\tocbuffer}

820: \let\text=\tocbuffer \def\tocbuffer{}

821: \def\,##1{\let##1=\relax}\indexbuffer

822: \def\,##1{\edef\tmp{\expandafter\ignoretwo \string ##1}%

823: \expandafter\ifx \csname w:\tmp\endcsname ##1\else

824: \continuefalse

825: \dbtwarning{auto-references are inconsistent, run me again}

\api: 11, 13, 20–21, 37–38 \apitext: 11, 21, 37 \bye: 7, 11, 33, 37 \setrefchecking: 37

37



5 For TEX Wizards DocBy.TEX

826: \expandafter\ignoretorelax \fi}

827: }

828: \def\ignoretorelax #1\relax{}

The \refcoef macro is redefined here: it does nothing. Next, the new version of the \reflabel
checks if the reference is in the same page as in the last run and if it has the same text. The new macro
\refuseword works as its original, only the -〈word〉 control sequences are used instead w:〈word〉. These
control sequence are used foe another purpose than during normal processing. First, these sequences
take the \relax meaning at line 804. Second, the \, is redefined in order to do the test of equivalence
of the w:〈word〉 and -〈word〉 sequences. The test is executed by \indexbuffer\relax at line 789. If an
inconsistency occurs then the message is printed and macro processing is skipped to \ignoretorelax.
next, the \refdgmacro is redefined: it writes data only to \tocbuffer. The other macros from \reffile
write data to \tocbuffer too. The old contents of \tocbuffer is stored to the \text and the new one
is created during \reffile reading. We check if the table of contents is changed at line 795.

5.10 Generating of Table of Contents, Index and PDF Outlines
The table of contents (TOC) and index can be printed at various places in the document (at

the begin, end, in the middle. . . ). We need to print them correctly independent of their position. The
\reffile can be read only at begin of the document. After that, it is cleared and reopen to write new
information. So, we need to store all desired information for TOC or index printing during reading of
the \reffile. We are using the \tocbuffer and \indexbuffer macros for this. First, these “buffers”
must be set as empty. The \addtext 〈text〉\to〈buffer〉 is used for adding new 〈text〉 to the 〈buffer〉.

docby.tex
832: \def\tocbuffer{}

833: \def\indexbuffer{}

834: \def\addtext #1\to#2{\expandafter\gdef\expandafter#2\expandafter{#2#1}}

The following commands are used in the \reffile.

\reftocline{〈number〉}{〈title〉}{〈page〉} % about section, subsection for TOC
\refdg{〈before〉}{〈word〉}{〈after〉}{〈k-word〉} % about usage of \dg, \dl
\refapiword{〈word〉} % about usage of \api{〈word〉}
\refuseword{〈word〉}{〈page〉} % about the existence of 〈word〉
\reflabel{〈label〉}{〈text〉}{〈page〉} % see section 5.9, links, references
\refcoef{〈coefficient〉}{〈number〉}{〈height〉} % see section 5.7, spec. notes
\refns{〈nslabel〉} % see section 5.5, name spaces
\refnsend{〈nslabel〉} % see section 5.5, name spaces

The \reftocline {〈number〉}{〈title〉}{〈pagenumber〉} macro is used for TOC.
docby.tex

836: \def\reftocline#1#2#3{\def\currb{#1}%

837: \istocsec#1.\iftrue \def\currsecb{#1}\else \addbookmark\currsecb \fi

838: \addtext\dotocline{#1}{#2}{#3}\to\tocbuffer}

The information about all sections and subsections are stored in \tocbuffer gradually. This
buffer includes control sequences \dotocline {〈number〉}{〈title〉}{〈page〉}. The only difference between
section and subsection is stored in the 〈number〉 parameter: subsection has the 〈number〉 with a period.
This difference is recognised by the \istocsec macro.

docby.tex
840: \def\dotocline#1#2#3{\par

841: \istocsec#1.\iftrue \ptocline{#1}{#2}{#3}\else \ptocsubline{#1}{#2}{#3}\fi}

842: \def\istocsec#1.#2\iftrue{\if^^X#2^^X}

The \tocbuffer includes TOC information about sections and subsections. Moreover, it includes
the data about documented words stored by \refdg a \refapiword.

docby.tex
844: \def\refdg#1#2#3#4{%

845: \edefsec{-#2}{#1\noexpand\right\if!#4!#3\fi}

\ignoretorelax: 38 \addtext: 25, 37–39, 41 \reffile: 25, 29–31, 33–34, 36–38, 40, 42
\reftocline: 34–35, 38, 40 \tocbuffer: 37–40 \dotocline: 38, 40 \istocsec: 38
\refdg: 21, 30–32, 37–40 \refapiword: 37–39

38



5 For TEX Wizards DocBy.TEX

846: \expandafter\addtext\csname-#2\endcsname,\to\indexbuffer

847: \addbookmark\currb

848: \addtext\ptocentry @{#2}{#4}\to\tocbuffer

849: \ifx^^X#4^^X\enctextable{#2}{\sword{#2}} % slovo je z \dg

850: \else \expandafter\def\csname ns:\currns % slovo je z \dl

851: \expandafter\expandafter\expandafter\endcsname

852: \expandafter\expandafter\expandafter

853: {\csname ns:\currns\endcsname \locword{#4}}

854: \fi

855: }

856: \def\refapiword#1{\addbookmark\currb \addtext\ptocentry +{#1}{}\to\tocbuffer}

The \refdg macro has {〈before〉}{〈word〉}{〈after〉}{〈k-word〉} parameters where 〈before〉 is a
text before word, 〈word〉 is a long variant of the word and 〈after〉 can include optional braces (). If
the long word differ from short word (when \dl is used) then 〈k-word〉 includes the short variant of the
word else 〈k-word〉 is empty. The \refdg macro stores its information to \tocbuffer and \indexbuffer
in parallel. If 〈k-word〉 is empty then \sword is stored to encTEX table. If 〈k-word〉 is nonempty then
namespaces are taken into account. The TOC is created by the \dotoc macro.

docby.tex
858: \def\dotoc{\bgroup \savetocfalse \sec \tittoc \par \smallskip

859: \leftskip=\parindent \rightskip=\parindent plus .5\hsize

860: \tochook \tocbuffer \par\egroup}

The Index is created by \indexbuffer which includes the list of all declared words in the docu-
ment. Each word is sored in the form of control sequence (this takes minimum TEX memory) and they
are separated by comma (before sorting) or \, (after sorting):

before sorting: \-〈word1 〉 , \-〈word2 〉 , \-〈word3 〉 , \-〈word4 〉 , ...
after sorting: \, \-〈wordA〉 \, \-〈wordB〉 \, \-〈wordC 〉 \, \-〈wordD〉 ...

The \-〈word〉 means one control sequence here. Each control sequence is a macro with the body
〈before〉\right〈after〉, see the 845 line. The index is printed by the \doindex macro.

docby.tex
862: \def\doindex {\par\penalty0

863: \calculatedimone

864: \ifdim\dimen1<7\baselineskip \vfil\break \fi

865: \sec \titindex \par

866: \ifx\indexbuffer\empty

867: \dbtwarning {index is empty, run me again}

868: \else

869: \message{DocBy.TeX: sorting index...}

870: \sortindex

871: \indexhook

872: \vskip-\baselineskip

873: \begmulti 2 \rightskip=0pt plus5em \parfillskip=0pt plus2em

874: \widowpenalty=0 \clubpenalty=0

875: \let\,=\doindexentry \indexbuffer \endmulti

876: \fi

877: }

The \calculatedimone command and the test of \dimen1 value prepares the two columns type-
setting, see the section 5.13. The \doindex begins the \sec with the \titindex title. The index
printing is started when \indexbuffer is nonempty. The \indexbuffer is sorted by \sortindex (see
section 5.11). Then the two columns printing is opened by \begmulti 2 and the \, separator takes the
meaning \doindexentry. This macro prints each index entry when \indexbuffer expands.

docby.tex
878: \def\doindexentry #1{%

879: \edef\tmp{\expandafter\ignoretwo \string #1}%

880: \expandafter \remakebackslash \tmp\end

881: \expandafter \printindexentry \expandafter {\tmp}%

882: }

883: \def\remakebackslash#1#2\end{\if#1\nb \def\tmp{\nb#2}\fi}

884: \def\ignoretwo #1#2{}

\dotoc: 7, 4, 14, 39 \indexbuffer: 33, 37–39, 41–42 \doindex: 7, 4, 6, 14, 39–40, 44

39



5 For TEX Wizards DocBy.TEX

The \doindexentry macro removes the \- characters from the control sequence \-〈word〉 by the
\ignoretwo, so the \tmp includes 〈word〉 only. If the 〈word〉 begins by backslash, it is replaced by \nb
using \remakebackslash macro. The reason: we needn’t the backslash in the PDF internal labels, see
5.9 for more information. The index entry is finally printed by the \printindexentry macro.

When the PDF outlines are created, we need to know the number of children of each node in
the outlines tree. This number is calculated when \reffile is read by \addbookmark 〈node〉 macro
(see \reftocline and \refdg macros). The parameter 〈node〉 can be the number of section or the
〈section〉.〈subsection〉 pair. The 〈node〉 for which we are calculating children is saved in \currb macro.
The \currsecb includes the parent of the \currb, if it exists. The \bk:〈node〉 is advanced by one using
the \addbookmark macro.

docby.tex
886: \def\addbookmark#1{\undef{bk:#1}\iftrue\defsec{bk:#1}{1}%

887: \else \tempnum=\csname bk:#1\endcsname\relax

888: \advance\tempnum by1

889: \edefsec{bk:#1}{\the\tempnum}

890: \fi}

891: \def\currb{} % vychozi hodnota <uzel> pro jistotu

The \bookmarks macro opens the group, redefines the \dotocline and \ptocentry (i.e. macros
from \tocbuffer), inserts the first PDF outline with the name of the document and executes the
\tocbuffer.

docby.tex
893: \def\bookmarks{\ifx\pdfoutput\undefined \else

894: \bgroup

895: \def\dotocline##1##2##3{%

896: \undef{bk:##1}\iftrue \tempnum=0 \else \tempnum=\csname bk:##1\endcsname\relax\fi

897: \if^^X##1^^X\advance\partnum by1

898: \setoutline[sec:\thepart]{##2}{\opartname\space\thepart: }%

899: \else \setoutline[sec:##1]{##2}{}\fi}

900: \def\ptocentry##1##2##3{\edef\tmpb{\ifx^^X##3^^X##2\else##3\fi}%

901: \tempnum=0 \setoutline[##1##2]{\tmpb}{}}%

902: \def\nb{\string\\}\def\TeX{TeX}\def\docbytex{DocBy.TeX}\def\_{_}\def\tt{}\def~{ }%

903: \def\unskip{}\bookmarkshook

904: \ifx\headtile\empty \else

905: \tempnum=0 \setoutline[sec::start]{...\headtitle\empty...}{}\fi % viz \savepglink

906: \tocbuffer

907: \egroup \fi

908: }

The \setoutline [〈label〉]{〈text〉}{〈prefix 〉} creates the PDF outline 〈prefix 〉〈text〉 and the link
with 〈label〉 is activated. The \tempnum register includes the number of children of this PDF outline.

docby.tex
909: \def\setoutline[#1]#2#3{{\def\nb{/_}\xdef\tmp{#1}}%

910: \def\tmpa{\pdfoutline goto name{\tmp} count -\tempnum}%

911: \cnvbookmark{\tmpa{#3\nobraces#2{\end}}}%

912: }

913: \def\cnvbookmark#1{#1} % zadna konverze

914: \def\nobraces#1#{#1\nobrA}

915: \def\nobrA#1{\ifx\end#1\empty\else\nobraces#1\fi}

The special “conversion” macro \cnvbookmark is used here. It is nonactive by default. User
can set (for example) \let\cnvbookmark=\lowercase for č → c, ž → z etc. conversions. The \lccode
setting can be done by \bookmarkshook.

The text is converted by \nobraces macro for removing {}. The macro \nobrA is used here
too. When we have (for example) {\tt text} in \TeX{} then the text in TeX is the result of such
conversion.

5.11 Sorting by Alphabetical Order
This work is done by \sortindex macro. First version implemented the bubble sort algorithm

but it was slow for large indexes. For example sorting of the index of this document has taken circa

\ignoretwo: 31, 37, 39, 42 \remakebackslash: 39 \addbookmark: 38–40 \currb: 38–40
\currsecb: 38 \bookmarks: 7, 36, 40 \setoutline: 40 \cnvbookmark: 14, 40 \nobraces: 40
\nobrA: 40

40



5 For TEX Wizards DocBy.TEX

2 seconds of computer time. My son Mirek rewrote the sorting by mergesort algorithm in the second
version of docByTeX. The previous 52 thousand sorting queries (for an index of the size comparable with
the index used here) was reduced to 1600 queries, so 30 times better.

First, we declare the \ifAleB which answers true if A < B (see also \isAleB macro below). The
auxiliary macros \nullbuf, \return and \fif are used here. The \return macro is used for escaping
from various loops to the \relax mark. The \fi are balanced by the \fif macro in nested \if...\fi
constructions. This save the number of \expandafter commands.

docby.tex
919: \newif\ifAleB

920: \def\nullbuf{\def\indexbuffer{}}

921: \def\return#1#2\fi\relax{#1} \def\fif{\fi}

The \sortindex macro puts to the input queue the content of the whole \indexbuffer followed
by \end,\end, the new \indexbuffer is set as empty and the \mergesort macro is executed.

docby.tex
923: \def\sortindex{\expandafter\nullbuf

924: \expandafter\mergesort\indexbuffer\end,\end

925: }

The \mergesort takes two groups of items repeatedly, each group is sorted already. The groups
are separated by commas in the input queue. These two groups are merged to one sorted group. This
process is repeated until \end occurs. One merging of two groups looks like that: suppose for example
two groups eimn,bdkz, which is merged to one group bdeikmnz,. Letters in that example are the whole
sorted entries.

At the begin of the process, all groups have only one item. After first pass over input queue,
the result is the groups with two items. They are saved back in the \indexbuffer. Next pass puts the
\indexbuffer to the input queue and creates groups with four items. Next, there are 8 items per group
etc. This process is repeated until only one sorted group is created (line 936) and only \end is in the
second group. The \gobblerest macro removes the second \end from input queue.

docby.tex
926: \def\mergesort #1#2,#3{%

927: \ifx,#1 % prazdna-skupina,neco, (#2=neco #3=pokracovani)

928: \addtext#2,\to\indexbuffer % dvojice skupin vyresena

929: \return{\fif\mergesort#3}% % \mergesort pokracovani

930: \fi

931: \ifx,#3 % neco,prazna-skupina, (#1#2=neco #3=,)

932: \addtext#1#2,\to\indexbuffer % dvojice skupin vyresena

933: \return{\fif\mergesort}% % \mergesort dalsi

934: \fi

935: \ifx\end#3 % neco,konec (#1#2=neco)

936: \ifx\empty\indexbuffer % neco=kompletni setrideny seznam

937: \edef\indexbuffer{\napercarky#1#2\end}% % vlozim \, mezi polozky

938: \return{\fif\fif\gobblerest}% % koncim

939: \else % neco=posledni skupina nebo \end

940: \return{\fif\fif \expandafter\nullbuf % spojim \indexbuffer+neco a cele znova

941: \expandafter\mergesort\indexbuffer#1#2,#3}%

942: \fi\fi % zatriduji: p1+neco1,p2+neco2, (#1#2=p1+neco1 #3=p2)

943: \isAleB #1#3\ifAleB % p1<p2

944: \addtext#1\to\indexbuffer % p1 do bufferu

945: \return{\fif\mergesort#2,#3}% % \mergesort neco1,p2+neco2,

946: \else % p1>p2

947: \addtext#3\to\indexbuffer % p2 do bufferu

948: \return{\fif\mergesort#1#2,}% % \mergesort p1+neco1,neco2,

949: \fi

950: \relax % zarazka, na ktere se zastavi \return

951: }

The core of the \mergesort is on the lines 943–948. The \mergesort macro saves first item of
the first group to the #1 parameter, next items of the first group to the #2 parameter and the first item
of the second group to the #3 parameter. If #1<#3 then we save #1 to the output \indexbuffer, the #1
is removed from input queue and \mergesort is executed again. The cases with empty parameters are
solved in the lines 927–933: we need to save the rest of the nonempty group to the output \indexbuffer

\ifAleB: 41 \nullbuf: 41 \return: 41 \fif: 41 \sortindex: 39–41 \mergesort: 41–42

41



5 For TEX Wizards DocBy.TEX

and go to the next pair of groups. If the terminal string \end,\end is scanned then the next run of
\mergesort is executed after \indexbuffer is put to the input queue and set it to empty value.

The sorting of the two items are realized by \isAleB 〈itemA〉〈itemB〉 macro. The items are in the
form \-〈wordA〉 and \-〈wordB〉. The macro converts these parameters to the strings by \string prim-
itive and expands to \testAleB 〈wordA〉\relax〈wordB〉\relax. The \lowercase primitive is executed
here because we needn’t distinguish between uppercase/lowercase letters.

docby.tex
952: \def\isAleB #1#2{%

953: \edef\tmp{\expandafter\ignoretwo\string#1&0\relax\expandafter\ignoretwo\string#2&1\relax}%

954: \lowercase \expandafter {\expandafter \testAleB \tmp}%

955: }

The \testAleB 〈wordA〉\relax〈wordB〉\relax macro tests if 〈wordA〉 precedes 〈wordB〉. It he
first letters are the same, the macro is called recursively. The recursion will be truly finished because
different tails are appended to the compared words at line 953.

docby.tex
956: \def\testAleB #1#2\relax #3#4\relax {%

957: \ifx #1#3\testAleB #2\relax #4\relax \else

958: \ifnum ‘#1<‘#3 \AleBtrue \else \AleBfalse \fi

959: \fi

960: }

The macro \napercarky inserts \, separators between items in the sorted \indexbuffer.
docby.tex

961: \def\napercarky#1{\ifx#1\end \else

962: \noexpand\,\noexpand#1\expandafter\napercarky

963: \fi

964: }

5.12 Merging of the List of the Page Numbers
Each occurrence of the 〈word〉 is stored to the \reffile as \refuseword {〈word〉}{〈page〉}. This

macro is processed at the begin of the document when \reffile is read.
docby.tex

969: \def\refuseword#1#2{%

970: \expandafter \ifx\csname w:#1\endcsname \relax

971: \defsec{w:#1}{#2}

972: \else

973: \edefsec{w:#1}{\csname w:#1\endcsname,#2}

974: \fi

975: }

So, the list of the pages where the 〈word〉 occurs is stored in the \w:〈word〉 macro. Pages are
separated by commas. The list looks like:

2,5,5,10,11,12,12,13,13,13,27

We need to convert this list to the format 2, 5, 10--13, 27, i.e. we need to remove double
occurrences and to replace consecutive lists of pages by intervals in the form 〈from〉--〈to〉. This work is
done by \listofpages {〈word〉} macro which puts the list of pages to the input queue terminated by
,0, and executes the \transf macro.

docby.tex
976: \def\listofpages#1{%

977: \expandafter\expandafter\expandafter \transf\csname w:#1\endcsname,0,%

978: }

The \transf macro removes the page numbers which are equal to \dgnum or \apinum. We want
to avoid the double occurrence of the main page and underlined page in the list. These pages are printed
separately. The declaration of the registers follows:

docby.tex
980: \newcount\apinum

981: \newcount\dgnum

982: \newcount\tempnum

983: \newif\ifdash

\isAleB: 41–42 \testAleB: 42 \napercarky: 41–42 \refuseword: 25, 30, 37–38, 42
\listofpages: 20–21, 42 \dgnum: 20–21, 42–43 \apinum: 20–21, 42–43

42



5 For TEX Wizards DocBy.TEX

984: \newif\iffirst

The \tempnum is current page number processed in the list and \ifdash returns true if the interval
is opened by 〈from〉--. The \iffirst returns true if the first page of the list is processed.

The \transf 〈list of pages〉,0, executes repeatedly the \cykltransf macro.
docby.tex

986: \def\transf{\dashfalse \firsttrue \tempnum=-100 \bgroup \cykltransf}

987:

988: \def\cykltransf #1,{\ifnum #1=\apinum \else \ifnum #1=\dgnum \else

989: \ifnum #1=0 \let\cykltransf=\egroup

990: \ifdash \pglink\the\tempnum\relax \fi

991: \else

992: \ifnum #1=\tempnum % cislo se opakuje, nedelam nic

993: \else

994: \advance\tempnum by 1

995: \ifnum #1=\tempnum % cislo navazuje

996: \ifdash \else

997: --\dashtrue

998: \fi

999: \else % cislo nenavazuje

1000: \ifdash

1001: \advance\tempnum by-1

1002: \pglink\the\tempnum \relax\dashfalse, \pglink#1\relax

1003: \else

1004: \carka \pglink#1\relax

1005: \fi\fi\fi\fi

1006: \tempnum=#1 \fi\fi \cykltransf

1007: }

1008: \def\carka{\iffirst \firstfalse \else, \fi}

The \cykltransf macro is a little finite state automaton. It needs no more comments.

5.13 Multicolumn typesetting
The macros for multicolumn printing are borrowed from “TEXbook inside out”, pages 244–246.

docby.tex
1012: \newdimen\colsep \colsep=\parindent % horiz. mezera mezi sloupci

1013: \def\roundtolines #1{%% zaokrouhlí na celé násobky vel. rádku

1014: \divide #1 by\baselineskip \multiply #1 by\baselineskip}

1015: \def\corrsize #1{%% #1 := #1 + \splittopskip - \topskip

1016: \advance #1 by \splittopskip \advance #1 by-\topskip}

1017:

1018: \def\begmulti #1 {\par\bigskip\penalty0 \def\Ncols{#1}

1019: \splittopskip=\baselineskip

1020: \setbox0=\vbox\bgroup\penalty0

1021: \advance\hsize by\colsep

1022: \divide\hsize by\Ncols \advance\hsize by-\colsep}

1023: \def\endmulti{\vfil\egroup \setbox1=\vsplit0 to0pt

1024: \calculatedimone

1025: \ifdim \dimen1<2\baselineskip

1026: \vfil\break \dimen1=\vsize \corrsize{\dimen1} \fi

1027: \dimen0=\Ncols\baselineskip \advance\dimen0 by-\baselineskip

1028: \advance\dimen0 by \ht0 \divide\dimen0 by\Ncols

1029: \roundtolines{\dimen0}%

1030: \ifdim \dimen0>\dimen1 \splitpart

1031: \else \makecolumns{\dimen0} \fi

1032: \ifvoid0 \else \errmessage{ztracený text ve sloupcích?} \fi

1033: \bigskip}

1034: \def\makecolumns#1{\setbox1=\hbox{}\tempnum=0

1035: \loop \ifnum\Ncols>\tempnum

1036: \setbox1=\hbox{\unhbox1 \vsplit0 to#1 \hss}

1037: \advance\tempnum by1

1038: \repeat

1039: \hbox{}\nobreak\vskip-\splittopskip \nointerlineskip

1040: \line{\unhbox1\unskip}}

1041: \def\splitpart{\roundtolines{\dimen1}

\transf: 42–43 \cykltransf: 43

43



6 Index DocBy.TEX

1042: \makecolumns{\dimen1} \advance\dimen0 by-\dimen1

1043: \vskip 0pt plus 1fil minus\baselineskip \break

1044: \dimen1=\vsize \corrsize{\dimen1}

1045: \ifvoid0 \else

1046: \ifdim \dimen0>\dimen1 \splitpart

1047: \else \makecolumns{\dimen0} \fi \fi}% TBN

One problem is solved in addition. We check the empty space on the current page before the
section title is printed. This work is done by \calculatedimone (executed by \doindex macro at the
line 863).

docby.tex
1048: \def\calculatedimone{%

1049: \ifdim\pagegoal=\maxdimen \dimen1=\vsize \corrsize{\dimen1}

1050: \else \dimen1=\pagegoal \advance\dimen1 by-\pagetotal \fi}

5.14 The final settings, catcodes
The catcodes are set at the end of the docby.tex file. We add the active category for the "

character and we set the _ as a normal character because this character is mostly used in the identifiers
and the catcode 8 of this character causes many problems.

docby.tex
1055: \catcode‘\_=12

1056: \let\subori=\_ \def\_{_}

1057: \everymath={\catcode‘\_=8 } \everydisplay={\catcode‘\_=8 }

The \everymath and \everydisplay returns the category of _ to the plainTEX meaning (as math
index prefix).

The active " character separates the “inline verbatim” environment.
docby.tex

1063: \catcode‘\"=\active

1064: \let\activeqq="

1065: \def"{\leavevmode\hbox\bgroup\mubytein=1\let\leftcomment=\empty

1066: \let\returntoBlack=\empty \let\linecomment=\empty \let"=\egroup

1067: \def\par{\errmessage{\string\par\space inside \string"...\string"}}%

1068: \setverb\tt\quotehook

1069: }

The \langleactive sets the active catcode for the < char. So, you can write <text> in “inline
verbatim” and the 〈text〉 is printed.

docby.tex
1071: \def\langleactive{\uccode‘\~=‘\<\catcode‘\<=13

1072: \uppercase{\def~}##1>{{$\langle$\it##1\/$\rangle$}}}

6 Index
The control sequences marked by (�) are sequences at user level. Other control sequences are

internal in DocBy.TEX. The bold page number points to the place where the sequence is defined and
documented, other page numbers point to occurrence of the sequence. The control sequences for users
have underlined pagenumber in the list of page numbers. This means the page where the sequence is
documented at user level.

\addbookmark: 40, 38–39
\addtext: 38, 25, 37, 39, 41
�\api: 37, 11, 13, 20–21, 38
\apinum: 42, 20–21, 43
�\apitext: 37, 11, 21
�\author: 19, 12, 4
\bbbf: 16, 18–19, 21
\bbf: 16, 18
�\begitems: 23, 13
�\begtt: 28, 9, 14, 22, 25, 29

\begtthook: 14, 28
\Black: 17, 15–16, 18–20,

22, 27, 33, 36–37
\Blue: 17, 15, 20, 36
�\bookmarks: 40, 7, 36
\bookmarkshook: 14, 40
\Brown: 17, 18–19, 21–22
\btt: 16, 18
�\bye: 37, 7, 11, 33
\calculatedimone: 44, 39, 43

\calculatedimone: 39, 43–44 \langleactive: 14, 44

44



6 Index DocBy.TEX

�\cbrace: 23, 8
�\cite: 36, 12, 9, 11, 13, 37
\cnvbookmark: 40, 14
\currb: 40, 38–39
\currns: 30, 39
\currsecb: 40, 38
\cykltransf: 43
\dbtitem: 23
\dbtversion: 24
\dbtwarning: 23, 24–27, 32, 36–37, 39
\defsec: 23, 28, 30, 36–37, 40, 42
�\dg: 30, 9, 6–7, 10–13, 20–21,

24, 31–32, 38–39
�\dgh: 30, 9, 10, 13
�\dgn: 30, 9, 10, 13
\dgnum: 42, 20–21, 43
\dgpar: 30
�\dl: 30, 9, 10–11, 13, 20–21,

29, 31–32, 38–39
�\dlh: 30, 9, 10, 13
�\dln: 30, 9, 10, 13
\docbytex: 17, 34, 40
\docsuffix: 15, 13
�\doindex: 39, 7, 4, 6, 14, 40, 44
\dopglink: 36, 35
�\dotoc: 39, 7, 4, 14
\dotocline: 38, 40
\dparam: 30, 31
\edefsec: 23, 30, 37–38, 40, 42
�\emptynumber: 18, 12, 35
\emptysec: 24
\enctextable: 24, 25, 29, 31–32, 39
�\enditems: 23, 13
�\endnamespace: 29, 11, 15
\endttloop: 28, 29
\ewrite: 30, 29, 32, 35
\fif: 41
�\figdir: 23, 13
\figwidth: 22, 23
\flword: 32, 26
\footline: 19
\fword: 32, 26
\genlongword: 30, 32
\gobblelast: 31
\gobblerest: 33, 34, 41
\Green: 17, 15–16, 36
\headline: 19, 36
\headlinebox: 19, 20
\headtile: 19, 40
\hsize: 16, 13, 22, 33, 39, 43
\ifAleB: 41
\ifcontinue: 25, 26–27, 37
�\ifig: 22, 13, 23
�\ifirst: 25, 7, 8–9, 14–15, 21–22, 26
\ifsavetoc: 34, 18, 35
\ifskipping: 25, 27–28

\ignoretorelax: 38
\ignoretwo: 40, 31, 37, 39, 42
�\iidg: 31, 10, 20, 32
�\iidgh: 32, 10
�\iidgn: 32, 10
�\iidl: 31, 10, 32
�\iidlh: 32, 10
�\iidln: 32, 10
\iilink: 35
\iipart: 35
\iisec: 34, 35
\iisubsec: 35, 34
\iititle: 18, 19
�\ilabel: 28, 9, 27
\ilabelee: 28
\ilabellist: 28, 27
�\inchquote: 23, 8
\indexbuffer: 39, 33, 37–38, 41–42
\indexhook: 14, 39
�\inext: 26, 7, 8–9, 14–15, 21–22
\inputfilename: 25, 21–22, 26–27
�\ins: 15, 4, 7, 13
\insinternal: 26, 25, 27
\isAleB: 42, 41
\isnameprinted: 22
\istocsec: 38
�\item: 23, 13
�\itemno: 23, 13
\itsmall: 16, 17
�\label: 36, 12, 13, 31–32, 37
�\labeltext: 36, 13, 28, 35
\langleactive: 44, 14
\lastline: 28, 26–27
\leftcomment: 15, 26, 44
\linecomment: 15, 26, 44
�\lineno: 25, 8, 27–28
\linkskip: 35, 18, 36
\listofpages: 42, 20–21
\locword: 29, 39
\lword: 30, 26, 29
\makelinks: 34, 17–18, 35
\managebrackets: 31, 30
\maybespace: 31
\mergesort: 41, 42
�\module: 15, 4, 10–14
\modulename: 15
\mydotfill: 21
\myldots: 21
�\namespace: 29, 11, 15
\namespacemacro: 29, 30
\napercarky: 42, 41
�\nb: 23, 8, 11, 15, 30, 34, 36, 39–40
\nextdparam: 31, 30
�\noactive: 24, 6, 15, 25, 29, 32
\nobrA: 40
\nobraces: 40

45



6 Index DocBy.TEX

\nocontinue: 27, 26
\noheadline: 19, 18
\nolastspace: 34
\normalhead: 19
\noswords: 26, 25, 27–28
\nullbuf: 41
�\numref: 36, 12, 13, 37
\nwidth: 16, 19, 33
�\obrace: 23, 8
�\onlyactive: 25, 7, 24
\opartname: 14, 40
\oriBlack: 17, 15, 20, 27
\outputhook: 14, 15, 34
\oword: 25
\owordbuffer: 24, 25
�\part: 35, 12, 14
\partfont: 16, 18
\partnum: 35, 21, 40
�\percent: 23, 8, 15
\pglink: 36, 20–21, 35, 43
�\pgref: 36, 12, 13, 20–21, 37
\printbrackets: 31, 30
\printdg: 20, 31–32
\printdginside: 20, 32
\printfnote: 20, 31–32
\printiabove: 21, 22, 26
\printibelow: 21, 22, 27
\printiline: 21, 22, 27–28
\printilineA: 28, 26–27
\printindexentry: 21, 39–40
\printpart: 18, 35
\printpartbelow: 18, 35
\printsec: 17, 18, 34–35
\printsecbelow: 17, 18, 34–35
\printsubsec: 18, 35
\printsubsecbelow: 18, 35
\printvabove: 22, 28
\printvbelow: 22, 28–29
\printvline: 22, 28
�\projectversion: 19, 12
\ptocentry: 21, 37, 39–40
\ptocline: 20, 21, 38
\ptocsubline: 20, 21, 38
\quotehook: 14, 44
\readiparamwhy: 26, 25
\readnewline: 27, 26
\rectangle: 17, 18–21
\Red: 17, 20, 37
\refapiword: 38, 37, 39
\refcoef: 33, 34, 37–38
\refdg: 38, 21, 30–32, 37, 39–40
\reffile: 38, 25, 29–31, 33–34,

36–37, 40, 42
\reflabel: 36, 37–38
\refns: 30, 29, 38
\refnsend: 30, 38

\reftocline: 38, 34–35, 40
\refuseword: 42, 25, 30, 37–38
\remakebackslash: 40, 39
\return: 41
\returninsinternal: 27, 26
\returntoBlack: 15, 16, 26, 44
\rightcomment: 15
\rmsmall: 16, 17, 19–20, 33
\runttloop: 28
\savelink: 35, 36
\savepglink: 36, 19, 35, 40
\scaniparam: 26, 25
\scaniparamA: 26
\scaniparamB: 26
\scaniparamC: 26
\scannexttoken: 28, 29
�\sec: 34, 12, 15, 17–18, 39
\seclabel: 34, 18, 35
\secnum: 34, 18, 35–36
\secparam: 34, 18, 35
\secparamA: 34
\secparamB: 34
\sectitle: 34, 18–19, 35
\separeright: 21
\setcmykcolor: 17
\setlinecomment: 15, 16
\setlrcomment: 15, 16
\setnormalprinting: 16, 17, 22
\setoutline: 40
\setparamC: 34
\setrefchecking: 37
\setsmallprinting: 16, 14, 17, 21–22
\setverb: 24, 26, 28, 44
�\skippingfalse: 25, 8, 9, 28
�\skippingtrue: 25, 8, 28
\softinput: 23, 24
\sortindex: 41, 39–40
\specfootnote: 33, 20
\specrule: 22, 21
\startline: 26, 27
\startverb: 28
\stopline: 26, 27
�\subsec: 34, 12, 18
\subsecnum: 34, 18, 35
\sword: 25, 24, 26, 31–32, 39
\testAleB: 42
\testilabel: 28
\testline: 27, 26
\thepart: 35, 18, 21, 40
\titindex: 14, 39
�\title: 18, 12, 4, 19
\titmodule: 14, 15
\tittoc: 14, 39
\titversion: 14, 19
\tmpA: 34, 18, 25–26, 30–31, 35
\tocbuffer: 38, 37, 39–40

46



6 Index DocBy.TEX

\tochook: 14, 39
\totalfoocount: 33, 37
\totalfoodim: 33, 37
\transf: 43, 42
\ttlineno: 25, 29
\ttsmall: 16, 17, 20–22, 33
\ttstrut: 16, 17, 21–22
\undef: 23, 20–21, 25, 28–30, 32, 36, 40

\varparam: 31, 30
\vsize: 16, 33, 43–44
\writelabel: 36
\writelabelinternal: 36
\Yellow: 17, 19–20, 22

struct mypair my_special_function(): 5
struct mypair: 5

47


	...DocBy.TeX...
	preface
	for users
	file types
	\module

	an example of the module documentation
	\ins
	mypair
	my_special_function

	what version of TeX for DocBy.TeX?
	enc
	NOenc
	PDF
	DVI

	searching words by encTeX
	\noactive
	\onlyactive

	the index, table of contents, footnotes and bookmarks generation
	\doindex
	\dotoc
	\bye
	\bookmarks

	source code inserting
	\ifirst
	\inext
	\end
	\empty
	\nb
	\obrace
	\cbrace
	\percent
	\inchquote
	\lineno
	\skippingfalse
	\skippingtrue
	\count

	references to line numbers
	\ilabel

	verbatim environment by \begtt/\endtt and by quotes
	\begtt
	\endtt

	the declaration of the documented word
	\dg
	\dgn
	\dgh
	\dl
	\dln
	\dlh
	\iidg
	\iidgh
	\iidgn
	\iidl
	\iidlh
	\iidln

	namespaces
	\namespace
	\endnamespace

	the application level of the documentation
	\api
	\apitext

	title, parts, sections, subsections
	\sec
	\subsec
	\part
	\title
	\projectversion
	\author
	\headtitle
	\savetocfalse
	\emptynumber

	hyperlinks, references
	\label
	\pgref
	\numref
	\ilink
	\cite
	\labeltext

	pictures inserting
	\ifig
	\figdir

	items
	\begitems
	\enditems
	\item
	\itemno


	for advanced users
	internal names
	\titindex
	\tittoc
	\titmodule
	\titversion
	\opartname

	hooks
	\begtthook
	\quotehook
	\indexhook
	\tochook
	\bookmarkshook
	\outputhook

	the commands \module and \ins
	\module
	\docsuffix
	\modulename
	\ins

	the comments turned to green color
	\setlinecomment
	\setlrcomment
	\linecomment
	\leftcomment
	\rightcomment
	\returntoBlack


	for designers
	parameters and auxiliary macros
	\hsize
	\vsize
	\nwidth
	\bbf
	\bbbf
	\btt
	\ttsmall
	\rmsmall
	\itsmall
	\partfont
	\setsmallprinting
	\ttstrut
	\setnormalprinting
	\Blue
	\Red
	\Brown
	\Green
	\Yellow
	\Black
	\setcmykcolor
	\oriBlack
	\rectangle
	\docbytex

	sections and subsections
	\printsec
	\printsecbelow
	\printsubsec
	\printsubsecbelow
	\printpart
	\printpartbelow
	\emptynumber

	the title, the author
	\title
	\iititle
	\projectversion
	\author

	headers and footers
	\footline
	\headline
	\normalhead
	\noheadline
	\headtile
	\headlinebox

	printing of the hyperlink destinations and footnote references
	\printdg
	\printdginside
	\printfnote

	the index and table of contents item
	\ptocline
	\ptocsubline
	\mydotfill
	\ptocentry
	\myldots
	\printindexentry
	\separeright

	the source code listing
	\printiabove
	\printiline
	\printibelow
	\specrule
	\isnameprinted

	the \begtt ... \endtt printing
	\printvabove
	\printvline
	\printvbelow

	pictures
	\figwidth
	\ifig
	\figdir

	items
	\begitems
	\enditems
	\itemno
	\dbtitem
	\item


	for TeX wizards
	auxiliary macros
	\dbtwarning
	\defsec
	\edefsec
	\undef
	\nb
	\obrace
	\cbrace
	\percent
	\inchquote
	\softinput
	\setverb

	initialization
	\dbtversion
	\enctextable
	\owordbuffer
	\noactive
	\emptysec
	\sword
	\onlyactive
	\oword

	the \ifirst, \inext, \ilabel macros
	\lineno
	\ttlineno
	\ifcontinue
	\ifskipping
	\skippingfalse
	\skippingtrue
	\ifirst
	\inputfilename
	\inext
	\noswords
	\readiparamwhy
	\startline
	\stopline
	\scaniparam
	\scaniparamA
	\scaniparamB
	\scaniparamC
	\insinternal
	\testline
	\nocontinue
	\returninsinternal
	\readnewline
	\printilineA
	\lastline
	\ilabellist
	\ilabel
	\ilabelee
	\testilabel

	commands \begtt, \endtt
	\begtt
	\startverb
	\runttloop
	\endttloop
	\scannexttoken

	the namespaces
	\namespacemacro
	\namespace
	\locword
	\endnamespace
	\ewrite
	\lword
	\genlongword
	\refns
	\refnsend
	\currns

	the \dg command and friends
	\dg
	\dl
	\dgn
	\dgh
	\dln
	\dlh
	\dgpar
	\dparam
	\nextdparam
	\varparam
	\gobblelast
	\managebrackets
	\printbrackets
	\maybespace
	\iidg
	\iidl
	\iidgh
	\iidlh
	\iidgn
	\fword
	\iidln
	\flword

	the special footnotes
	\totalfoocount
	\totalfoodim
	\specfootnote
	\refcoef
	\gobblerest

	section, subsection, part
	\secnum
	\subsecnum
	\sectitle
	\ifsavetoc
	\sec
	\subsec
	\tmpA
	\secparam
	\seclabel
	\secparamA
	\secparamB
	\nolastspace
	\setparamC
	\iisec
	\makelinks
	\iisubsec
	\partnum
	\thepart
	\part
	\iipart

	links and references
	\savelink
	\iilink
	\linkskip
	\savepglink
	\pglink
	\dopglink
	\reflabel
	\numref
	\pgref
	\labeltext
	\writelabel
	\writelabelinternal
	\label
	\cite
	\api
	\apitext
	\bye
	\setrefchecking
	\ignoretorelax

	generating of table of contents, index and pdf outlines
	\addtext
	\reffile
	\reftocline
	\tocbuffer
	\dotocline
	\istocsec
	\refdg
	\refapiword
	\dotoc
	\indexbuffer
	\doindex
	\ignoretwo
	\remakebackslash
	\addbookmark
	\currb
	\currsecb
	\bookmarks
	\setoutline
	\cnvbookmark
	\nobraces
	\nobrA

	sorting by alphabetical order
	\ifAleB
	\nullbuf
	\return
	\fif
	\sortindex
	\mergesort
	\isAleB
	\testAleB
	\napercarky

	merging of the list of the page numbers
	\refuseword
	\listofpages
	\dgnum
	\apinum
	\transf
	\cykltransf

	multicolumn typesetting
	\calculatedimone

	the final settings, catcodes
	\langleactive


	index

