
OpTEX—A new generation of Plain TEX

Petr Oľsák

Introduction

OpTEX [1] is a new format prepared for LuaTEX.
It keeps Plain TEX’s simplicity, adds the power of
the OPmac macros [2] and leaves behind the old ob-
scurities with non-Unicode fonts and with various
TEX engines. It provides a powerful font selection
system, colors, graphics, references, hyperlinks, syn-
tax highlighting, preparing indexes and bibliography
listings. All these features are implemented at TEX
macro level and they are ready to use without any
external program. OpTEX is a new Plain TEX suit-
able for the present.

OpTEX was introduced in February 2020 and
uploaded to CTAN. Now, it is ready to use in both
TEX Live and MiKTEX with the basic command
optex document. It underwent significant develop-
ment in the first half of 2020, so please take the most
recent version of it (from CTAN or a distribution) if
you want to experiment with it.

First example

A question was given on TeX.StackExchange [3]:
“How can I write the symbol t

ˇ
in TEX?” Unfor-

tunately, the accepted answer is typical for the old
days of TEX: use a macro package which loads a
font in an obscure 8-bit encoding and use the com-
mand \textsubwedge{t}. For me, the question has
no sense and the answer sounds like something from
the last millennium. Imagine a little modification
of this question: “How can I write the symbol K in
TEX?” And the answer should be: use package XY,
then you can use \printthischarK command. But
the normal answer is: “Use K in your text.”

My answer, second on that StackExchange
page, was: “Use OpTEX and then use normally the
symbol t

ˇ
. If a Unicode font supporting this charac-

ter is loaded* then there is no more problem.” For
example:

\fontfam[Linux Libertine]

Symbol t
ˇ

\bye

There was an addendum to my answer, essentially
this: You can define \def\t{t

ˇ
} if your text editor

or keyboard does not comfortably support making

* More precisely: it is not a single character in this
case but this is only a technical detail.

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 25 May 2020 11:13 901

the t
ˇ
. Of course, TEX supports the command \def

for such situations (among many others).
Unfortunately, there are many similar “prob-

lems”; you can see them at StackExchange or else-
where. These “problems” shouldn’t exist if we leave
the old way of thinking about TEX. Today, there
are plenty of good Unicode fonts. Simply, use them.

The second typical matter can be found in
the accepted answer of that same StackExchange
thread: “If you are using a special TEX engine then
you must do \ifsomething ...\fi and you must
load a package XY supporting this \ifsomething.”
This is absurd. OpTEX eliminates the need to deal
with such issues. It supports only one modern TEX
engine: LuaTEX. Simplicity is power.

The three-line source file from the previous ex-
ample shows another very important characteristic
of Plain TEX. You need not code your document,**
you don’t need to adapt yourself to a special com-
puter language for your source files where are many
\begin{foo}...\end{foo}, for example. Simply
write what you want. Of course, you have to decide
what font family is used (the \fontfam command)
and then just write the text. And use \bye if you
want to say goodbye to TEX.

Main principles of OpTEX

There are three main principles.

• The first one was mentioned in the previous
paragraph. The author can write the docu-
ment, he or she need not code the document
in a computer language. The source text of the
OpTEX document keeps the basic rules about
tagging documents (chapters, sections, empha-
sized text, footnotes, listings of items, etc.), but
there are minimal tagging marks, because we
want to keep the text human-readable. There
is a minimum of braces {...}, for example.
• The second principle of OpTEX says: don’t

hide TEX. Don’t declare new parameters and
new syntax constructions. If a user needs
or wants to use TEX then he or she sim-
ply uses TEX. For example, we have the
\hsize primitive register, and we don’t de-
clare a new one like \textwidth. If you need
to set a value to the register then use simply
\hsize=15cm; there is no alternative syntax
like \setlength{\textwidth}{15cm}. Basic
knowledge of the TEX primitive syntax is ex-
pected when using OpTEX. But it pays off.

** Many questions at StackExchange begin with “My
code is . . . ”.

preliminary draft, 25 May 2020 11:13 preliminary draft, 25 May 2020 11:13

• LATEX, ConTEXt and their many packages give
users plenty of new parameters and options,
and they create a new level of language (on
top of TEX). When we are using or develop-
ing OpTEX, we don’t need to go that same
way. There is TEX for controlling the docu-
ment, without new options and parameters.
The macros of OpTEX are more straightfor-
ward and simple because they do not create a
new level of syntax but only what is explicitly
needed. If you need to make a change in the
design of the document (for example) then you
can copy the appropriate macro from OpTEX
to your macro file and make the changes di-
rectly there. For example, there are macros
_printchap, _printsec in OpTEX. Do you
need a different design? Copy such macros to
your macro file and declare your design there.
This is the third principle of OpTEX which es-
tablishes a significant difference from LATEX or
ConTEXt and which keeps the macros simple.

Summary of features provided by OpTEX

The user manual of OpTEX is 21 pages. It con-
tains hundreds of hyperlinks to a second part of
the manual: technical documentation (about 140
pages). The technical documentation is generated
directly from the OpTEX sources. There are listings
of all OpTEX codes with extensive technical notes
about the code.

We introduce a few features of the OpTEX sys-
tem here, giving just short overviews.

The font selection system. You can use basic
variant selectors \rm, \bf, \it and \bi as in Plain
TEX, i.e. {\bf text}. Plain TEX does not define the
\bi selector for bold italic, but OpTEX does because
almost all font families used today provide this font
variant.

You can choose the font family by the \fontfam
command. WYSIWYG systems typically offer a
menu for selecting the font family and this menu
shows how text looks in listed fonts. This is a great
advantage of such systems. You can get similar
information by writing \fontfam[catalog]. Then
all font families registered with the OpTEX macros
are printed like a font catalog. Each font family is
shown in all provided variants and the font modifiers
given for each family are listed too. This “almost
instantaneous” font catalog provides a sort of sub-
stitute for the interactive menus used in WYSIWYG

systems.

902 preliminary draft, 25 May 2020 11:13 TUGboat, Volume 0 (2001), No. 0

Many font families provide font modifiers, for
example \cond for condensed variants or \caps for
capitals and small capitals. Usage of such font mod-
ifiers change a font context, but does not select the
new font directly. This is done only when a vari-
ant selector is used. The variant selector respects
the font context given by previous font modifiers.
For example \cond\it selects condensed italics and
if someone uses \bf in the same TEX group scope
where \cond was declared then the bold condensed
variant is selected.

There are many font modifiers declared among
the font families. The set of available font modifiers
depends on the selected font family. These modifiers
can be independent of each other if the font family
provides all such shapes. For example, \cond and
\caps are independent, so you can set four font con-
texts by these two selectors and you can use four
basic variant selectors: this gives 16 font shapes.

The settings of Unicode font features are im-
plemented as font modifiers. This means that the
current setting of font features is a part of the font
context.

The setting of the font size is implemented as
another font modifier. It means that the font size
is the part of the font context too. If the family
provides optical sizes, these sizes are respected by
the OpTEX font selection system.

The font families are declared and registered
by the font selection system in font family files. The
family-dependent font modifiers are declared here.
You can load more font families (by more \fontfam

commands) and you can select between them by the
family selectors like \Termes, \Heros, \LMfonts,
etc. The font modifiers and variant selectors be-
have independently in each family, and they respect
the selected family. For example if you want to mix
Heros with Termes, you can declare:

\fontfam[Heros]

\fontfam[Termes] % Termes is current

\def\exhcorr{\setfontsize{mag.88}}

\famvardef\ss {\Heros\exhcorr\rm}

\famvardef\ssi{\Heros\exhcorr\it}

Compare ex-height of Termes

\ss with Heros \rm and Termes again.

This example shows several things:

• If multiple font families are loaded then the last
one is selected as the current family.
• More variant selectors can be defined by the
\famvardef command. The example shows a
declaration of new \ss (sans serif) and \ssi

(sans serif italic) variant selectors.

preliminary draft, 25 May 2020 11:13 preliminary draft, 25 May 2020 11:13

• The font size can be set by the \setfontsize

command. It provides more syntactic rules but
one of them is the keyword mag: the new font
size is calculated as a factor of the font size
currently selected.
• The Termes and Heros families have visually

incompatible x-heights. We need to do the cor-
rection Termes = 0.88 Heros.

Macro programmers can declare font selec-
tors directly with the \font primitive if the font
name or font file name and its font features is
known. Or the font selector can be declared by
the \fontlet\new=\ori 〈sizespec〉 if another font
selector is known, and we need only to set another
font size of the same font. Finally, the font selector
can be declared by the \fontdef macro if you can
set the font by variant selector and font modifiers.

The last case (by the \fontdef macro) respects
the actual font family and font context when the
\fontdef macro is used. If you change the font
family before a set of \fontdef declarations then all
declarations are re-calculated to the new font family.
Another example: you can set a new default font
size by \typosize[11/13.5] and all fonts declared
by \fontdef will respect this new font size.

OpTEX loads only a few 8-bit Latin Modern
fonts when its format is initialized. The Unicode
fonts cannot be here due to a technical limitation of
LuaTEX. It is supposed that these pre-loaded fonts
will be used only for short experiments with OpTEX
macros, not for processing real documents. A user
should specify the font family with \fontfam first.
This macro loads the Unicode variant of the fonts.

A lot of font families provided by OpTEX have
registered the appropriate Unicode math font too.
For example Latin Modern fonts have Latin Modern
Math, Termes has TEX Gyre Termes Math, etc. The
\fontfam macro loads this Unicode math font too
unless the user says \noloadmath.

Tagging the document. All the typical tags
for documents are borrowed from OPmac. The
op-demo.tex document shows the basics of such
tagging. Chapters are marked by \chap 〈title〉,
sections by \sec 〈title〉 and subsections by \secc

〈title〉. The 〈title〉 ends at the end of the current line
(unless the line ends with the % character; then the
title continues). This decision mainly respects user
needs: to write the document simply. Today, long
lines (more than 80 characters) are quite common.
Macro writers have a little complication if they use
\chap, etc., in their macros because the end of line
is changed locally only at the input processor level,
but this can be handled.

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 25 May 2020 11:13 903

Labels for cross-references can be declared
by \label[〈label〉] or by \sec[〈label〉] 〈title〉,
etc. The labels can be used by the commands
\ref[〈label〉] or \pgref[〈label〉].

Lists of items look like:

\begitems

* First idea.

* Second idea.

\begitems \style i

* First subidea.

* Second subidea.

\enditems

\enditems

Auto-generated listings. The table of contents
can be printed by the \maketoc command and the
index by the \makeindex command. The alphabet-
ical sorting of the index is done at the TEX macro
level with respect to the rules of the current language
selected. No external software is needed. Thus, you
don’t need to do more than specify the words to be
indexed and write \makeindex. The index is reini-
tialized in each TEX run.

The situation is similar with bibliographies.
OpTEX reads .bib database files directly without
the need of any external program and creates these
listings with respect to a big set of rules declared
in the bib-style files. These rules and customizing
possibilities are described in [4]. OpTEX provides
simple and iso690 bib-style files now.

Colors. Colors can be simply used, for example,
{\Red something} or {\Magenta text}. They can
be defined in three possible ways:

\def \Red {\setrgbcolor {1 0 0}}

\def \Magenta {\setcmykcolor {0 1 0 0}}

\def \Brown {\setcmykcolor {0 0.67 0.67 0.5}}

\def \Black {\setgreycolor {0}}

and the user can define more such colors. The re-
spective color model (RGB or CMYK) is used in
low-level PDF commands. If you need not mix
color models in the PDF output then you can say
\onlyrgb or \onlycmyk. Then the colors are re-
calculated to the desired color model as needed.
This calculation is done only via simple math formu-
lae; the visual feeling of the color may be changed.
These two color models are not transformable from
one to the other without loss of information.

OpTEX initializes two color stacks: one for nor-
mal text and a second for footnotes. Footnotes can
span from one page to another independently on the
main text, so we need two independent color stacks.
You can create a long footnote in green, for exam-
ple, with the main text in red at the same point.

preliminary draft, 25 May 2020 11:13 preliminary draft, 25 May 2020 11:13

The next page continues with the red main text and
green footnote. All colors work without problems on
the next page. (If you try to do the same in LATEX,
you realize that it does not work without special
care.)

The color blender macro \colordef is provided
by OpTEX. It enables color mixing in the subtrac-
tive (CMYK) or additive (RGB) color model.

Graphics. The \inspic {〈file name〉} includes a
graphics file in JPEG or PNG or PDF format (the
last can be a vector graphic) at the current typeset-
ting point as an \hbox. The width or height of the
picture can be given by \picwidth or \picheight

parameters. Other parameters accepted by the
\pdfximage primitive can be specified too. For ex-
ample, you can select a given page from the included
PDF file.

Inkscape (a free vector graphics editor) is able
to save a vector graphic to a PDF file and labels
to a LATEX file. OpTEX is able to read both these
files (the LATEX commands used by Inkscape must
be emulated here). You can do this by \inkinspic

macro which outputs the PDF graphic plus the la-
bels. They are printed in the current fonts selected
in the document.

OpTEX supports linear transformations using
commands \pdfrotate, \pdfscale and (in general)
\pdfsetmatrix. All compositions of these opera-
tions are allowed too. The \transformbox macro
does linear transformations and the real boundaries
of the box are calculated in respect of the trans-
formed material.

If the graphics need to interact with the text,
then TikZ can be used (\input tikz). This works
in Plain TEX too. But simple tasks can be done
using OpTEX macros without TikZ (we are happy
when TikZ is not loaded because TikZ is a very big
package). For example, putting the text into an oval
or into an ellipse (its size depends on the amount
of the text) can be done directly by \inoval or
\incircle OpTEX macros. A clipping path can be
declared by \clipinoval or \clipincircle.

Hyperlinks. There are four types of internal links:
cross-references, citations (bibliography), links from
the table of contents or index, and hyperlinks
to/from footnotes. There is one type of external
link generated by \url or \ulink macros. The
hyperlinks can be activated by the \hyperlinks

or \fnotelinks commands. The user or macro
programmer can declare more types of hyperlinks.

Structured outlines (for PDF viewers) are auto-
matically generated by the \outlines macro.

904 preliminary draft, 25 May 2020 11:13 TUGboat, Volume 0 (2001), No. 0

Verbatim text. Code listings can be placed be-
tween a \begtt and \endtt pair, or they can be in-
cluded from an external file with, e.g., \verbinput
(〈fromline〉-〈toline〉) filename.c. Inline verbatim
text can be surrounded by an arbitrary character
declared by the \activettchar macro. Nowadays,
the most common usage is \activettchar‘ as a
declaration. Then you can type ‘\relax‘ to print
\relax. This tagging is inspired by the Markdown
language and is used very commonly at StackEx-
change, for example.

Sometimes you need to use inline verbatim in
titles or parameters of other macros. This doesn’t
work when the \activettchar character is used be-
cause there is a “catcode movement” in the param-
eter of ‘...‘. OpTEX provides a robust alternative
command for such situations: \code{〈text〉}. The
〈text〉 is printed detokenized with \escapechar set
to −1. From the user point of view, all “sensitive”
characters in the \code parameter 〈text〉 should be
escaped. For example, \code{\\relax\{} prints
\relax{. This can be used in titles of sections, etc.,
without problems.

Listings can be printed with highlighted syn-
tax (typically colored). Such syntax highlighting is
defined in hisyntax macro files and can be activated
with \begtt \hisyntax{C} ... \endtt, for exam-
ple. All processing is done at the TEX macro level
without using any external programs. These hisyn-
tax files are easily customizable. They support C,
XML/HTML, TEX and Python syntax at this time;
others may be added in the future. Users can declare
more such files.

Languages. LuaTEX is the only TEX engine which
enables loading hyphenation patterns for a selected
language on demand inside the document. Thus, we
need not preload all hyphenation patterns in the for-
mat. Hooray! OpTEX provides the language selec-
tors \〈isocode〉lang (for example \enlang, \frlang,
\delang, \eslang, \cslang). These commands
load the hyphenation patterns of a given language
when they are first used in the document, and switch
to the loaded hyphenation patterns when they are
used subsequently. Macro programmers can set
more language-dependent macros; these macros are
processed when an \〈isocode〉lang language selector
is used.

Language-dependent phrases like “Chapter”,
“Figure”, “Table” are automatically selected by
the current value of the \language primitive regis-
ter (this is used for hyphenation patterns). These
phrases are declared in OpTEX via:

preliminary draft, 25 May 2020 11:13 preliminary draft, 25 May 2020 11:13

_langw en Chapter Table Figure Subject

%---

_langw cs Kapitola Tabulka Obrázek Věc

_langw de Kapitel Tabelle Abbildung Betreff

_langw es Capı́tulo Tabla Figura Sujeto

Quotation mark pairs can be declared by
\quoteschars〈clqq〉〈crqq〉〈clq〉〈crq〉, for example
\quoteschars“ ”‘’ for English. The first type of
quotation marks can be printed by \"text" and the
second type by \’text’.* Several languages have
their \quoteschars predefined in OpTEX.

Styles in OpTEX. The default design style of the
document is inspired by Plain TEX: 10 pt/12 pt size
of basic text, 20 pt \parindent, zero \parskip.

The command \report at the beginning of the
document sets some typesetting parameters differ-
ently, suitable for reports. The \letter command
sets a design convenient for letters.

If you write \slides then you can create pre-
sentation slides. This style is documented in the file
op-slides.tex which also serves as an example of
usage of this style.

Name spaces for control sequences. Suppose
that the user writes \def\fi{Finito} into the doc-
ument. What happens? When LATEX, ConTEXt or
original Plain TEX is used then the document pro-
cessing crashes. When OpTEX is used, then nothing
critical happens. The user name space of control
sequences allows names where only letters are used.
If such sequences are redefined by users then this
only affects their own usage and macros; it’s not
a problem for the internal macros of OpTEX. The
internal macros of OpTEX do not use such control
sequences.**

When OpTEX initializes, all TEX primitives
and OpTEX macros have two representations, pre-
fixed: _hbox and unprefixed: \hbox. OpTEX uses
only the prefixed versions. This is the OpTEX name
space. A user can work with the non-prefixed ver-
sions of control sequences. If he or she redefines
them nothing happens with the OpTEX internal
macros.

* When \quoteschars are declared, then the original
Plain TEX macros \" and \’ are redefined. This prob-
lem is discussed further in the following section about
compatibility with Plain TEX.

** There is only one exception: the control sequence
\par is (unfortunately) hardwired to the TEX internal
algorithms — it is the output of the tokenizer when an
empty line occurs in the input. If the user redefines \par
by mistake then processing may crash.

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 25 May 2020 11:13 905

The internal OpTEX macros not intended for
direct usage by the user have only a prefixed form.
And the control sequences never used in the OpTEX
macros but offered to the user (\alpha and other
sequences for math symbols) are defined only in un-
prefixed form (in the user name space).

The character _ always has category code 11
(letter) in OpTEX. You aren’t forced to write
\makeatletter or anything similar when you need
to access the control sequences from the OpTEX
name space. Simply use them. You can redefine
these control sequences, but then presumably you
know what you are doing. An example of when
it’s expected to redefine macros from the OpTEX
name space was given above where the macros
_printchap and _printsec were mentioned.

The character _ has category code 11 in math
mode too. It is defined as math-active for doing
subscripts in math formulae. Cases like \int_a^b

work too because they are handled in the LuaTEX
input processor.

OpTEX uses the _ character only as the first
character of control sequences. We suppose that
macro package writers will use internal control se-
quences in the form _pkg_foo. This is a pack-
age name space. Moreover, the macro writer does
not need to see repeated _pkg_foo, _pkg_bar,
_pkg_other control sequences in the code because
there is the command _namespace{pkg}. When
it is used then the macro writer can use \.foo,
\.bar, \.other in the code which is much more
human-readable. These control sequences are con-
verted to internal _pkg_foo, etc., automatically by
the LuaTEX input processor.

Odds and ends. Logos are defined with an op-
tional / character which can follow the control se-
quence; it is ignored if present. You can write, for
example:

\OpTeX/ is a new generation of Plain \TeX/

with features comparable to \LaTeX.

But \LaTeX/ needs to load about ten additional

packages to have comparable features.

This source looks more attractive. We needn’t sep-
arate such control sequences by {} or some similar
construction.

The command \lorem[〈from〉-〈to〉] produces
the text “Lorem ipsum dolor sit”. There is an inter-
esting implementation of this macro: the 150 para-
graphs of the text are not loaded into the OpTEX
format. Rather, the first usage of the \lorem com-
mand loads the external file lipsum.ltd.tex from

preliminary draft, 25 May 2020 11:13 preliminary draft, 25 May 2020 11:13

the LATEX package lipsum and prints the given para-
graphs. The second and subsequent usage of the
\lorem macro prints the desired text from memory.

Compatibility with Plain TEX. All Plain TEX
macros were re-implemented in OpTEX; nearly all
features of Plain TEX are essentially preserved. But
there are some differences.

• The internal control sequences like \p@ or \f@@t
were renamed or completely removed. We don’t
support the “catcode dancing” with the @ char-
acter.

• The Latin Modern 8-bit fonts in the EC encod-
ing are preloaded instead of the Computer Mod-
ern 7-bit fonts.

• The math fonts are preloaded in 7-bit ver-
sions comparable to Plain TEX plus AMSTEX.
But if the \fontfam command is used then
the preloaded 8-bit text fonts and 7-bit math
fonts are not used; instead, Unicode text and
Unicode math fonts are used.

• The control sequences for characters defined by
\mathhexbox or in a similarly obscure way are
not defined (for example \P, \L). We suppose
that such characters should be used directly in
Unicode. Only the \copyright macro is kept
but it is defined by \def\copyright{ c©}.

• The accent macros \", \’, \v, \u, \=, \^, \.,
\H, \~, \‘, \t are undefined in OpTEX. We
are using Unicode, so all accented characters
can be written directly and this is the only rec-
ommended way. You can use these control se-
quences for your own purposes. For example
\" and \’ are used for quotation marks when
\quoteschars are declared, as mentioned ear-
lier. If you insist on using old accents from
Plain TEX then you can use the \oldaccents

command.

• The default paper size is A4 with 2.5 cm mar-
gins, not letter with 1 in margins. You can de-
clare the default Plain TEX margins by the com-
mand \margins/1 letter (1,1,1,1)in.

• The page origin is at the top left page corner,
not at the coordinates [1 in, 1 in] as in Plain
TEX. This is a much more natural setting.
These “1 in” values brought only unnecessary
complications for macro programmers.

• The \sec macro is reserved for sections, not the
math secant operator.

Tips and tricks. The web page [5] has a section
Tips and Tricks when using OpTEX. This is inspired
by Tips and Tricks of OPmac [6]. OpTEX users can
give a problem and I’ll try to put the solution here.

906 preliminary draft, 25 May 2020 11:13 TUGboat, Volume 0 (2001), No. 0

My path from TEX to OpTEX

My first attempts at TEX were with Plain TEX in
1991. I realized that it was unusable with the Czech
language until 8-bit support of fonts was ready. The
concept of writing Ol\v s\’ak instead of directly
Olšák is not viable for real Czech texts. And Czech
hyphenation patterns cannot work in the former case
either.

I became a member of the development team
of CSTEX. The 8-bit fonts with Czech and Slovak
alphabet (CSfonts) were created using METAFONT,
derived from the Computer Modern fonts. I cre-
ated a macro to read the plain.tex file without
the part of loading Computer Modern fonts. This
part was replaced by loading CSfonts. The Czech
and Slovak hyphenation patters were added and the
CSplain format was originated. I was (and still am)
a maintainer of CSplain. In the mid-1990s, I added
PostScript support to CSfonts and Czech and Slovak
accents for the 35 base Adobe fonts.

I read The TEXbook and felt that the descrip-
tion of all TEX algorithms could be done more sys-
tematically and clearly. This was the reason why I
wrote the TEXbook naruby (“TEXbook inside out”,
in Czech only) [7]. This book became a standard
for TEX manuals in Czech. For example, computer
science students were using it to help welcome their
new colleagues.

LATEX was not the center of my interest because
it seems to be more complicated. I wrote an article
“Why I don’t like using LATEX” (1997, in Czech) [8].
I have reread this article recently and I found that
all its arguments are still valid. The main problem is
that LATEX offers a “coding language” not a “human
language” for writing documents. The second prob-
lem is that it tries to hide TEX by creating a new
level of language. But this is impossible because
TEX was not designed for such a task. LATEX users
will still see the TEX messages like “extra alignment
tab has been changed to \cr”. This language is dif-
ferent from the language used in LATEX manuals, so
LATEX users are lost. From my point of view, it is
unfair to TEX users to hide TEX.

I created encTEX in 2003 [9]. It is a pdfTEX
extension which supports input of UTF-8 encoded
documents directly. The Unicode characters (rep-
resented by multi-byte sequences in UTF-8) are
mapped by encTEX to one 8-bit character or to a
control sequence which can be defined arbitrarily.
The most important advantage is that each Unicode
character is represented as only one token in TEX.
This is the main difference from the LATEX package
\inputenc.

preliminary draft, 25 May 2020 11:13 preliminary draft, 25 May 2020 11:13

I have been giving lessons about TEX to our
students and learning from them. They represent a
new generation and their point of view and require-
ments to TEX are very important to me. One of
the results of these discussions is: at present, only
Unicode makes sense. I decided that encTEX devel-
opment was a dead end. We have a sufficient number
of quality Unicode fonts today, we don’t need to do
special mappings and complicated macros, we can
use Unicode fonts directly.

As a maintainer of CSplain and (of course) user
of Plain TEX, I created many typical macros needed
for document processing: creating the table of con-
tents, fonts in different sizes, references, hyperlinks,
etc. I released these home-made macros in 2013 as
an additional package in CSplain called OPmac [2].
It works with CSplain or Plain TEX with all typical
TEX engines. The great disadvantage of OPmac is
that its technical documentation, though extensive,
is only in the Czech language, because it was cre-
ated as home-made documentation of home-made
macros.

I created the template for student theses at our
university based on OPmac and CSplain [10]. There
are hundreds of satisfied users. It shows that Plain
TEX is still viable today.

I planned to make a re-implementation of
OPmac with new English documentation and with
new features and internals. What TEX engine would
be suitable for such a plan? X ETEX does not support
all of the micro-typographic extensions introduced
by pdfTEX, and does not offer the extensive cus-
tomization of LuaTEX. Furthermore, it seems that
X ETEX is no longer significantly developed, while
LuaTEX has been declared substantively stable as of
version 1.10 (http://www.luatex.org/roadmap.html).
LuaTEX won.

I finished my reimplementation of OPmac by
May 2020 and the result is called OpTEX.* The
documentation of OpTEX expects knowledge of TEX
basics. This is the main reason why I wrote a short
encyclopedic document “TEX in a Nutshell” [11] (in
English). The big reference “TEXbook naruby” [7]
and short summary “TEX pro pragmatiky” [12] are
available only in the Czech language, unfortunately.

I hope that OpTEX will find many users and
thus gain more respect. I hope that it will be a good
alternative to other currently used formats. It can
show that the native principles of TEX do not have
to be covered by new levels of computer languages,
and they can live at present: 40 years after the birth

* You can guess why I had more time to do it in
the year 2020.

TUGboat, Volume 0 (2001), No. 0 preliminary draft, 25 May 2020 11:13 907

of TEX. My dream is to eliminate the widespread
notion among TEX users that TEX is equal to LATEX.
Will you help me with it?

References

1. http://petr.olsak.net/optex

2. P. Oľsák: OPmac: Macros for Plain
TEX. TUGboat 34:1, 2013, pp. 88–96.
petr.olsak.net/opmac-e.html

tug.org/TUGboat/tb34-1/tb106olsak-opmac.pdf

3. tex.stackexchange.com/questions/541064

4. P. Oľsák: OPmac-bib: Citations using
*.bib files with no external program.
TUGboat 37:1, 2016, pp. 71–78.
tug.org/TUGboat/tb37-1/tb115olsak-bib.pdf

5. petr.olsak.net/optex/optex-tricks.html

6. petr.olsak.net/opmac-tricks-e.html

7. P. Oľsák: TEXbook naruby, 1996, 2000. 468
pp., ISBN 80-7302-007-6. Freely available.
petr.olsak.net/tbn.html

8. P. Oľsák: Proč nerad použ́ıvám LATEX, 1997.
petr.olsak.net/ftp/olsak/bulletin/nolatex.pdf

9. petr.olsak.net/enctex.html (2003–)

10. P. Oľsák: The CTUstyle template for
student theses. TUGboat 36:2, 2015,
pp. 130–132. petr.olsak.net/ctustyle.html
tug.org/TUGboat/tb36-2/tb113olsak.pdf

11. ctan.org/pkg/tex-nutshell (2020–)

12. P. Oľsák: TEX pro pragmatiky, 2013, 2016.
148 pp, ISBN 978-80-901950-1-1. Freely
available. petr.olsak.net/tpp.html

� Petr Oľsák
Czech Technical University
in Prague
http://petr.olsak.net

preliminary draft, 25 May 2020 11:13 preliminary draft, 25 May 2020 11:13

