
OPmac: Macros for plain TEX

Petr Oľsák

The OPmac package provides simple additional
macros on top of plain TEX. It enables users to take
advantage of basic LATEX functionality: font size
selection, automatic creation of tables of contents
and indices, working with bibliography databases,
tables, references optionally including hyperlinks,
margin settings, etc. In this paper, the significant
properties of OPmac are shown. The complete
source of the macros and user and technical docu-
mentation is available through CTAN and the usual
TEX distributions, and its home on the web is
http://petr.olsak.net/opmac-e.html.

Introduction

I have decided to publish my macros together with
the new version of CSplain. I have been using these
macros for a long time for many purposes in my own
work. Now, I have made them cleaner, added user
and technical documentation, and released them.

The main reason is to give a set of macros which
solves common authorial tasks for plain TEX users.
A side benefit is that the macros demonstrate that
it is possible to do TEX code simply and effectively.
Most LATEX macro packages don’t have this fea-
ture. All macros are in the single (documented)
file opmac.tex with only 1500 lines. On the other
hand the LATEX code which solves comparable tasks
is placed in a kernel and dozens of LATEX packages
with many tens of thousands of lines in total.

Here are the main principles which I followed
when creating this macro package:

• Simplicity is power.
• Macros are not universal, but are readable and

understandable.
• Users can easily redefine these macros as they

wish.

Each part of the macro code is written to max-
imize readability for humans who want to read it,
understand it and change it.

The OPmac package offers a markup language
for authors of texts (like LATEX), i.e. a fixed set of
tags to define the structure of a document. This
markup is different from LATEX markup. It offers
the possibility of writing the source text of a docu-
ment somewhat more clearly and attractively. The
OPmac package, however, does not deal with the
many possible typographic designs of a document.
A simple, sober document is created if no additional
macros are used. We assume that authors will be

TUGboat, Volume 34 (2013), No. 1 901

able to modify the look of the document to suit their
requirements. You can see a complex example of
using OPmac with added macros for typesetting de-
sign at http://petr.olsak.net/ctustyle.html:
CTUstyle is the recommended design style for bach-
elor, master or doctoral theses at Czech Technical
University in Prague.

The following text is a short digest of the docu-
mentation. It illustrates the capability of the OPmac
package.

Using OPmac

OPmac is not compiled as a format. To use it in
plain TEX, you can simply \input opmac at the be-
ginning of your document. Here’s a trivial document
as a first example:

\input opmac
\typosize[11/13] % set basic font size

% and baselineskip
\margins/1 a4 (1,1,1,1)in % set 1in margins

% for A4 paper
Here is the text.
\bye

Font sizes

The commands for font size setting described here
are all local. In other words, if you use them in a
TEX group, the font sizes are selected locally within
the group, not globally.

The command

\typosize[〈fontsize〉/〈baselineskip〉]

sets the font size of text and math fonts and the
baselineskip. If one of the two parameters is empty,
the corresponding feature stays unchanged. The
metric unit is pt by default; this unit isn’t written
in the parameter values. You can change the unit
by the command \ptunit=〈something-else〉, for in-
stance \ptunit=1mm. Examples:

\typosize[10/12] % default in plain TeX
\typosize[11/12.5] % font size 11pt,

% baselineskip 12.5pt
\typosize[8/] % font size 8pt,

% baselineskip left unchanged

The command

\typoscale[〈font-factor〉/〈baselineskip-factor〉]

sets the text and math fonts size and baselineskip
to a multiple of the current font size and baseline-
skip. The factor is written like TEX’s scaled values,
meaning that 1000 leaves the value as-is. An empty
parameter is equivalent to 1000. Examples:

OPmac: Macros for plain TEX

\typoscale[800/800] % fonts and baselineskip
% re-sized to 80%

\typoscale[\magstep2/] % fonts bigger by 1.44x

The sizes declared by these macros (for example
in titles) are relative to the basic size selected for the
font (this may be an arbitrary size, not only 10pt).

The size of the current font can be changed
with the command \thefontsize[〈font-size〉] or
rescaled with \thefontscale[〈factor〉]. These
macros do not change the math font sizes or the
baselineskip.

The commands \resizefont, \regfont and
\resizeall are available for generally resizing
fonts. They’re described in the companion arti-
cle on CSplain, but can be used with OPmac alone;
CSplain need not be the format. The best design
size of the font for desired size is used. For example,
with Computer Modern, \typosize[18/] selects
the font cmr17 at 18pt.

Parts of the document

A document can be titled and divided into chapters,
sections and subsections, The parameters have to be
ended with an empty line (no braces are used):

\tit Document title 〈empty line〉
\chap Chapter title 〈empty line〉
\sec Section title 〈empty line〉
\secc Subsection title 〈empty line〉

Chapters are numbered with one number, sec-
tions by two numbers (〈chapter〉.〈section〉) and sub-
sections by three numbers (similarly). If there are
no chapters then sections have only one number and
subsections two.

The design of the chapter etc. titles are imple-
mented in the macros \printchap, \printsec and
\printsecc. Users can simply change these macros
to get their desired output.

The first paragraph after the title of chap-
ter, section and subsection is not indented by de-
fault; giving \let\firstnoindent=\relax makes
all paragraphs indented.

If a title is long enough, it breaks across mul-
tiple lines. It is better to explicitly give the break-
points because TEX cannot interpret the meaning of
the title. Users can insert the \nl (meaning newline)
macro to specify the breakpoints.

Other numbered objects

Apart from chapters, sections and subsections, there
are other automatically-numbered objects: equa-
tions and captions for tables and figures.

902 TUGboat, Volume 34 (2013), No. 1

If \eqmark is given as the last element in a math
display then this equation is numbered. The format
is one number in brackets. This number is reset in
each section.

In displays using \eqalignno, \eqmark can be
given in the last column before \cr. For example:

\eqalignno{
a^2+b^2 &= c^2 \cr

c &= \sqrt{a^2+b^2} & \eqmark \cr}

The next numbered object is captions; these are
tagged with \caption/t for tables and \caption/f

for figures. Example:

\hfil\table{rl}{
age & value \crl\noalign{\smallskip}
0--1 & unmeasurable \cr
1--6 & observable \cr
6--12 & significant \cr
12--20 & extreme \cr
20--40 & normal \cr
40--60 & various \cr
60--∞ & moderate}

\par\nobreak\medskip
\caption/t The relationship of

computer-dependency to age.

This example produces:

age value

0–1 unmeasurable
1–6 observable

6–12 significant
12–20 extreme
20–40 normal
40–60 various
60–∞ moderate

Table 2.3 The relationship of computer-
dependency to age.

The word “Table” followed by a number is
added by the macro \caption/t. The macro
\caption/f creates the word figure. The caption
text is centered. If it occupies multiple lines then
the last line is centered.

The added word (table, figure) depends on the
value of the \language register. OPmac implements
the mapping from \language numbers to languages
and the mapping from languages to the generated
words.

To make the table or figure a floating object,
you can use the plain TEX macros \midinsert,
\topinsert and \endinsert.

A \label[〈label〉] command preceding the
automatically-numbered object allows symbolic ref-
erencing to the object. The reference commands

Petr Oľsák

are \ref[〈label〉] (for the value of the number) and
\pgref[〈label〉] (for the page number). Example:

\label[beatle] \sec About The Beatles
...
\label[comp-dependence]
\hfil\table{rl}{...} % the table
\caption/t The relationship of

computer-dependency to age.
...
\label[pythagoras]
$$ a^2 + b^2 = c^2 \eqmark $$

Now we can point to the section~\ref[beatle] on
the page~\pgref[beatle] or write about the
equation~\ref[pythagoras]. Finally there
is an interesting Table~\ref[comp-dependence].

Lists

A list of items is surrounded by \begitems and
\enditems commands. The asterisk (*) is active
within this environment and it starts one item. The
item style can be chosen by \style parameter writ-
ten after \begitems:

\style o % small bullet
\style O % big bullet (default)
\style - % hyphen char
\style n % numbered 1., 2., 3., ...
\style N % numbered 1), 2), 3), ...
\style i % roman numerals (i), (ii), (iii), ...
\style I % Roman numerals I, II, III, ...
\style a % lettered a), b), c), ...
\style A % Lettered A), B), C), ...
\style x % small rectangle
\style X % big rectangle

Another style can be defined with the command
\sdef{item:〈style〉}{〈text〉}. The default style can
be redefined with \def\normalitem{〈text〉}. List
environments can be nested. Each new level of item
is indented by next multiple of \iindent which is
set to \parindent by default.

Table of contents

The \maketoc command prints a table of contents
of all \chap, \sec and \secc titles used in the docu-
ment. The text is read from an external file, so you
have to run TEX more than once (typically three
times if the table of contents is at the beginning of
the document).

A section name for the table of contents itself
is not printed. The usage of \chap or \sec isn’t
recommended here because the table of contents is
typically not referenced to itself. You can print the
unnumbered (and unreference-able) title with the
code:

TUGboat, Volume 34 (2013), No. 1 903

\def\thesecnum{}
\printsec{\unskip Table of Contents}
\maketoc

The titles of chapters etc. are written to an ex-
ternal file and then read from this file in a subse-
quent run of TEX. This technique can create prob-
lems when a somewhat complicated macro is used
in a title. OPmac solves this problem in a differ-
ent way than LATEX: users declare the problematic
macro as “robust” via an \addprotect\macro dec-
laration. The \macro itself cannot be redefined. The
common macros used in OPmac which are likely to
occur in titles are already declared in this way.

Making an index

An index can be included in a document with the
\makeindex macro. No external program is needed:
the alphabetical sorting is done inside TEX at the
macro level.

The \ii command (insert to index) declares the
following word, terminated by a space, as the index
item. This declaration is represented as an invisible
atom on the page connected to the next visible word.
The page number of the page where this atom occurs
is listed in the index entry. So you can type:

The \ii resistor resistor is a passive
electrical component ...

You can avoid doubling the word by using \iid

instead \ii:

The \iid resistor is a passive
electrical component ...
Now we’ll deal with the \iid resistor .

As shown, a period or comma has to be sepa-
rated from the word by a space when \iid is used.
This space (before the punctuation) is removed by
the macro in the current text.

If you need to have an actual space in an index
entry, use “~”. For example:

\ii linear~dependency Linear dependency of ...

Multiple-word entries are often organized in the
index in the format (for example):

linear dependency 11, 40–50
— independence 12, 42–53
— space 57, 76
— subspace 58

To do this you have to declare the parts of the
words with the / separator. Example:

{\bf Definition.}
\ii linear/space,vector/space
{\em Linear space} (or {\em vector space}) is ...

OPmac: Macros for plain TEX

The number of parts in one index entry is un-
limited. You can save typing via commas in the \ii

parameter: the previous example is equivalent to
\ii linear/space \ii vector/space.

Another need is to propagate to the index the
“reversed” terms; e.g. given linear/space, you also
want to index space/linear. You can do this con-
veniently with the shorthand ,@ at the end of the
\ii parameter. For example:

\ii linear/space,vector/space,@

is equivalent to:

\ii linear/space,vector/space
\ii space/linear,space/vector

The \makeindex macro creates the list of alpha-
betically sorted index entries with no section title
and without using multiple columns. OPmac pro-
vides another macro for multi-column typesetting:

\begmulti 〈number of columns〉
〈text〉
\endmulti

The columns will be balanced. The index title
can be printed with \sec. So an index in an OPmac
document might look like this:

\sec Index\par
\begmulti 3 \makeindex \endmulti

Only “pure words” can be propagated to the
index with the \ii command; there cannot be any
macros, TEX primitives, math selectors etc. OPmac
provides another way for create such complex index
entries: use a “plain text equivalent” as the \ii

parameter, and map this equivalent to the desired
TEX word which is printed in the index with the
\iis command. Here’s an example:

The \ii chiquadrat χ-quadrat method is
...
If the \ii relax |\relax| command is used
then \TeX\ is relaxing.
...
\iis chiquadrat {χ-quadrat}
\iis relax {{\tt \char‘\\relax}}
...

The \iis 〈equivalent〉 {〈text〉} creates one en-
try in the “dictionary of the exceptions”. The sort-
ing is done by 〈equivalent〉, while 〈text〉 is printed in
the index entry list.

Czech/Slovak standard alphabetical sorting is
used if the \language register is set to the Czech or
Slovak hyphenation patterns when \makeindex is in
progress. (The main difference from English sorting
is that “ch” is treated as one character between “h”
and “i”.)

904 TUGboat, Volume 34 (2013), No. 1

Colors

The color selection macros work only if a pdfTEX-
like engine is used. OPmac provides a small num-
ber of color selectors: \Blue, \Red, \Brown, \Green,
\Yellow, \White, \Grey, \LightGrey and \Black.
Users can define more such selectors by setting the
CMYK components. For example:

\def\Orange{\setcmykcolor{0 0.5 1 0}}

The selectors change the color of the text
and of lines with a thickness larger than 1bp. If
\linecolor immediately precedes the color selector
then the lines with a thickness less than or equal to
1bp are colored. This is a second independent color
setting.

The color selectors work globally starting on
the current page. If the colored text continues to
the next page, the color is correctly set on the fol-
lowing page(s) after a second run of TEX, because
this event is implemented via external file. Users
can also write \localcolor inside a group. This
command saves the current color and restores it af-
ter the group is completed. By default, it is as-
sumed that the group corresponds to the boundary
of a box which cannot break across pages. If this is
not true, \longlocalcolor can be used instead of
\localcolor. A basic example:

\Red the text is red
\hbox{\localcolor \Blue here is blue

{\localcolor \Green and green}
restored blue \Brown and brown}

now the text is red again.

A more usable example follows. Let’s define a
macro which creates colored text on a colored back-
ground, to be used like this:

\coloron〈background〉〈foreground〉{〈text〉}

Such a macro can be defined and used like this:

\def\coloron#1#2#3{%
\setbox0=\hbox{#3}\leavevmode
{\localcolor
\rlap{#1\strut\vrule width\wd0}%
#2\box0}}

\coloron\Yellow\Brown{Brown text
on a yellow background}

PDF hyperlinks and outlines

If the command

\hyperlinks{〈color-int〉}{〈color-ext〉}

is used at the beginning of the file, then the following
are hyperlinked when PDF output is used:

Petr Oľsák

• numbers generated by \ref or \pgref,
• numbers of chapters, sections and subsections

in the table of contents,
• numbers or marks generated by \cite com-

mand (bibliography references),
• texts printed by \url command.

The last object is an external link and it is col-
ored by 〈color-ext〉. Others links are internal and
they are colored by 〈color-int〉. Example:

\hyperlinks \Blue \Green % internal links blue,
% URLs green.

You can use another method of marking active
links: frames which are visible in the PDF viewer
but invisible when the document is printed. To
do this, define the macros \pgborder, \tocborder,
\citeborder, \refborder and \urlborder to be
the RGB color value (a triple) to use. Examples:

\def\tocborder{1 0 0} % links in toc:
% red frame

\def\pgborder{0 1 0} % links to pages:
% green frame

\def\citeborder{0 0 1} % links to references:
% blue frame

By default these macros are not defined, so no
frames are created.

There are “low level” commands to create the
links. You can specify the destination of an inter-
nal link with \dest[〈type〉:〈label〉]{〈height〉}. Ac-
tive text linked to the \dest can be created with
\link[〈type〉:〈label〉]{〈color〉}{〈text〉}. The 〈type〉
parameter is one of toc, pg, cite, ref or one user-
defined for your purposes. The 〈height〉 parameter
gives the vertical distance between the actual desti-
nation point and the current baseline.

The \url macro prints its parameter in the \tt
font and inserts potential breakpoints (after slash or
dot, for example). If the \hyperlinks declaration is
used then the parameter is treated as an external url
link. An example: \url{http://www.olsak.net}.

The PDF format also provides for “outlines”
which are notes placed in a special frame of a PDF

viewer. These notes are usually managed as a struc-
tured and hyperlinked table of contents of the doc-
ument. The command \outlines{〈level〉} creates
such an outline from the table of contents data in
the document. The 〈level〉 parameter gives the de-
fault level of opened outlines. Deeper levels can be
opened by (typically) clicking on the triangle symbol
after that.

The command \insertoutline{〈text〉} inserts
next entry into “outlines” at the main level 0. This
entry can be placed before table of contents (created
by \outlines) or after it.

TUGboat, Volume 34 (2013), No. 1 905

Verbatim

Display verbatim text in OPmac is surrounded
by the \begtt and \endtt pair. Inline verbatim
is tagged (before and after) by a character de-
clared with \activettchar〈char〉. For example
\activettchar| makes the | character do inline
verbatim markup, as in the TUGboat style.

If the numerical register \ttline is set to a
non-negative value then display verbatim numbers
the lines. The first line is numbered \ttline+1
and when the verbatim display ends, the \ttline

value is equal to the number of last line printed.
The next \begtt...\endtt environment will con-
tinue the line numbering. OPmac sets \ttline=-1

by default.
The indentation of lines in display verbatim is

controlled by the \ttindent register. This regis-
ter is set to \parindent at the time opmac.tex is
read. Users should change its value as desired, e.g.
if \parindent is changed after opmac.tex is read.

The \begtt starts a group in which the cat-
codes are changed. Then the \tthook macro is run.
This macro is empty by default; users can control
fine behavior with it. For example, more catcodes
can be reset here. To define an active character in
\tthook, you can use \adef as in this example:

\def\tthook{\adef!{?}\adef?{!}}
\begtt
Each occurrence of the exclamation mark
will be changed to the question mark
and vice versa. Really? You can try it!
\endtt

The \adef command sets its parameter as ac-
tive after the body of \tthook is read. So you need
not worry about active definitions beforehand.

Here are some tips for global \tthook defini-
tions:

% setting font size for verbatim:
\def\tthook{\typosize[9/11]}

% each listing is numbered from 1:
\def\tthook{\ttline=0}

% visible spaces:
\def\tthook{\adef{ }{\char‘\ }}

You can print a verbatim listing of an external
file with the \verbinput command. Examples:

% whole file program.c is printed:
\verbinput (-) program.c

% only lines 12-42:
\verbinput (12-42) program.c

% from beginning to line 60:
\verbinput (-60) program.c

% from line 61 to the end:
\verbinput (61-) program.c

% starting at line 70, only 10 lines printed:

OPmac: Macros for plain TEX

\verbinput (70+10) program.c
% from last line read, print 10 more lines:

\verbinput (+10) program.c
% from last line read, skip 5, print 7:

\verbinput (-5+7) program.c
% from last line read to the end:

\verbinput (+) program.c

The \ttline influences the line numbering in
the same way as the \begtt...\endtt environment.
If \ttline=-1 then real line numbers are printed;
this is the default. If \ttline<−1 then no line
numbers are printed.

The \verbinput output can be controlled
by \tthook and \ttindent, also just as with
\begtt...\endtt.

Tables

The macro \table{〈declaration〉}{〈data〉} provides
〈declaration〉 similar to LATEX: you can use the let-
ters l, r, and c, with each letter declaring one col-
umn aligned to left, right, center respectively. These
letters can be combined with the “|” character to
create a vertical line.

The command \cr ends a row as usual. OPmac
defines the following similar commands:

• \crl ends the row, with a horizontal line after.
• \crli is like \crl, but the horizontal line

doesn’t intersect any vertical double lines.
• \crlli is like \crli, but horizontal line is dou-

bled.

Basic example:

\table{||lc|r||}{ \crl
Month & commodity & price \crli

\tskip.5ex
January & notebook & \$ 700 \cr
February & skateboard & \$ 100 \cr
July & yacht & k\$ 170 \crl}

which generates the following result:

Month commodity price

January notebook $ 700
February skateboard $ 100
July yacht k$ 170

The \tskip〈dimen〉 command adds 〈dimen〉
vertical space after the current row, more or less
like \noalign{\vskip〈dimen〉} but without creat-
ing interruptions in vertical lines.

The configuration macros for \table are shown
in the following, with their default values:

% left material in each column:
\def\tabiteml{\enspace}

% right material in each column:
\def\tabitemr{\enspace}

% strut inserted in each line:

906 TUGboat, Volume 34 (2013), No. 1

\def\tabstrut{\strut}
% space between double vertical line:

\def\vvkern{1pt}
% space between double horizontal line:

\def\hhkern{1pt}

If you do

\def\tabiteml{$\enspace}\def\tabitemr{\enspace$}

then \table acts like LATEX’s array environment.
The command \frame{〈text〉} makes a frame

around 〈text〉. You can put the whole \table into
\frame to get a double-ruled border for a table. Ex-
ample:

\frame{\table{|c||l||r|}{\crl
\multispan3\vrule\hss\bf Title\hss

\vrule\tabstrut \crl
\noalign{\kern\hhkern}\crli

first & second & third \crlli
seven & eight & nine \crli}}

creates the following result:

Title

first second third

seven eight nine

The rule width of tables (and the implicit width
of all \vrules and \hrules) can be set by the com-
mand \rulewidth=〈dimen〉. The default value set
by TEX is 0.4pt.

Images

The command

\inspic 〈filename〉.〈extension〉〈space〉

inserts the image in the file 〈filename〉.〈extension〉.
Before the first \inspic command, you have to
set the picture width with \picw=〈dimen〉. Images
can be in PNG, JPG, JBIG2 or PDF format. The
\inspic command works with pdfTEX only.

PDF transformations

All typesetting elements are transformed in pdfTEX
by a linear transformation given by the current
transformation matrix. The \pdfsetmatrix {〈a〉
〈b〉 〈c〉 〈d〉} command creates an internal multipli-
cation with the current matrix, so linear transforma-
tions can be composed. The commands \pdfsave

and \pdfrestore allow for storing and restoring
the current transformation matrix.

OPmac provides the macros

\pdfscale{〈horizontal-factor〉}{〈vertical-factor〉}
\pdfrotate{〈angle-in-degrees〉}

Petr Oľsák

These macros simply expand to the proper
\pdfsetmatrix command.

Footnotes and marginal notes

Plain TEX’s macro \footnote is not redefined, but
a new macro \fnote{〈text〉} is defined. The foot-
note mark is added automatically and it is num-
bered on each page from one. The 〈text〉 is scaled
by \typoscale[800/800]. The footnote mark is
typeset with \def\thefnote{$^{\locfnum}$)} by
default. Users can redefine this; for example:

\def\thefnote{\ifcase\locfnum\or
*\or**\or***\or$^{\dag}$\or
$^{\ddag}$\or$^{\dag\dag}$\fi}

The \fnote macro is fully applicable only in
“normal outer” paragraphs. It doesn’t work inside
boxes (tables for example). If you are in such a case,
you can use \fnotemark〈number〉 inside the box
(only the footnote mark is generated). When the
box is finished you then use \fnotetext{〈text〉} to
define the text for footnote 〈number〉. The 〈number〉
after \fnotemark has to be 1 if only one such com-
mand is in the box. The second \fnotemark inside
the same box have to use the value 2 etc. The same
number of \fnotetexts have to be defined after the
box as the number of \fnotemarks inserted inside
the box.

Marginal notes can be printed by the macro
\mnote{〈text〉}. The 〈text〉 is placed in the right
margin on odd pages and the left margin on even
pages. This is done after a second TEX run because
the relevant information is stored in an external file.
If you want to place the notes only to a fixed margin,
write \fixmnotes\right or \fixmnotes\left.

The 〈text〉 is formatted as a little paragraph
with maximal width \mnotesize, ragged right in
the left margins and ragged left in the right margins.
The first line of this little paragraph is at the same
height as the invisible mark created by \mnote in
the current paragraph. Exceptions are possible via
the \mnoteskip register. You can implement such
exceptions to each \mnote manually, e.g., in a final
printing so that margin notes do not overlap.

BIBTEXing

The command \cite[〈label〉] makes citations of the
form [42]. Multiple citation labels are also allowed,
as in \cite[〈label1 〉,〈label2 〉,〈label3 〉] producing
[15, 19, 26]. If \shortcitations is given at the be-
ginning of the document then continuous sequences
of numbers are collapsed: [3–5, 7, 9–11].

TUGboat, Volume 34 (2013), No. 1 907

The printed numbers correspond to the same
numbers generated in the list of references. This list
can be created manually by \bib[〈label〉] command
for each entry. Example:

\bib[tbn] P. Olšák. {\it\TeX{}book naruby.}
468~p. Brno: Konvoj, 1997.

\bib[tst] P. Olšák.
{\it Typografický systém \TeX.}
269~p. Praha: CSTUG, 1995.

There are two other possibilities which use
BibTEX. The first is based to the command

\usebibtex{〈bib-base〉}{〈bst-style〉}

which creates the list of cited entries and entries
indicated by \nocite[〈label〉]. After the first TEX
run, \jobname.aux is created, so users have to run
BibTEX with the command bibtex 〈document〉.
After a second TEX run, BibTEX’s output is read,
and after a third run all references are properly
created.

The second possibility is based on a pre-
generated .bbl file by BibTEX. You can create
the temporary file (mybase.tex, let’s say) which
looks like this:

\input opmac
\genbbl{〈bib-base〉}{〈bst-style〉}
\end

After a first TEX run, mybase.aux is generated.
Then you can run bibtex mybase which generates
the .bbl file with all entries from the 〈bib-base〉.bib
file. The second TEX run on the file mybase.tex

generates the printed form of the list of all bib en-
tries with labels. Finally you can insert to your real
document one of the following commands:

% print all entries from mybase.bbl (a=all):
\usebbl/a mybase

% print only \cited and \nocited entries
% sorted by mybase.bbl (b=bbl):

\usebbl/b mybase
% print only \cited and \nocited entries
% sorted by \cite-order (c=cite):

\usebbl/c mybase

Sometimes a pure LATEX command occurs (un-
fortunately) in a .bib database or BibTEX style.
OPmac users can define such commands in the
\bibtexhook macro, which is expanded inside the
group before the .bbl file is read. Example:

\def\bibtexhook{
\def\emph##1{{\em##1}}
\def\frac##1##2{{##1\over##2}}

}

OPmac: Macros for plain TEX

Setting the margins

OPmac declares common paper formats: a4, a4l

(landscape a4), a5, a5l, b5, and letter; users can
declare their own format using \sdef:

\sdef{pgs:b5l}{(250,176)mm}
\sdef{pgs:letterl}{(11,8.5)in}

The \margins command declares the margins
of the document. This command has the following
parameters:

\margins/〈pg〉 〈fmt〉 (〈left〉,〈right〉,〈top〉,〈bot〉)〈unit〉

For example:

\margins/1 a4 (2.5,2.5,2,2)cm

These parameters are:

• 〈pg〉: 1 or 2 specifies single-page or double-page
(spread) design.
• 〈fmt〉: paper format (a4, a4l, etc.).
• 〈left〉, 〈right〉, 〈top〉, 〈bot〉: specifies the left,

right, top and bottom margins.
• 〈unit〉: unit used for the 〈left〉, 〈right〉, 〈top〉,
〈bot〉 values.

Any of the parameters 〈left〉, 〈right〉, 〈top〉,
〈bot〉 can be empty. If both 〈left〉 and 〈right〉 are
nonempty then \hsize is set. Else \hsize is un-
changed. If both 〈left〉 and 〈right〉 are empty then
typesetting area is centered in the paper format.
The analogous case holds when 〈top〉 or 〈bot〉 pa-
rameter is empty (for \vsize instead of \hsize).
Examples:

% \hsize, \vsize untouched,
% typesetting area centered:

\margins/1 a4 (,,,)mm
% right margin set to 2cm
% \hsize, \vsize untouched,
% vertically centered:

\margins/1 a4 (,2,,)cm

908 TUGboat, Volume 34 (2013), No. 1

If 〈pg〉=1 then all pages have the same margins.
If 〈pg〉=2 then the declared margins are used for odd
pages, and the margins of even pages are mirrored,
i.e. 〈left〉 is replaced by 〈right〉 and vice versa.

The command \magscale[〈factor〉] scales the
whole typesetting area. The fixed point of such scal-
ing is the so-called “Knuthian origin”: 1in below and
1in right of paper sides. Typesetting (breakpoints
etc.) is unchanged. Almost all units are relative after
such scaling; only paper format dimensions remain
unscaled. Example:

\margins/2 a5 (22,17,19,21)mm
\magscale[1414] \margins/1 a4 (,,,)mm

The first line sets the \hsize and \vsize and mar-
gins for final printing at a5 format. The setting on
the second line centers the scaled typesetting area to
the true a4 paper while breakpoints for paragraphs
and pages are unchanged. It may be useful for a
proof copy printed at a larger size. After the review
is done, the second line can be commented out.

� Petr Oľsák
Czech Technical University

in Prague,
Czech Republic

Petr Oľsák

