
New CSplain of 2012

Petr Oľsák

The CSplain package has existed since 1994 and it
is a gentle extension of plain TEX to make using
Czech and Slovak languages feasible. This was the
case until October 2012, when the author carried
out significant revisions and additions to CSplain.
The basic change resulted from the decision to set
the default input encoding of CSplain to UTF-8. In
addition, CSplain got many other new features: the
possibility of loading all available hyphenation pat-
terns, the ability to cooperate with 16-bit TEX en-
gines (LuaTEX, X ETEX), more effective work with
fonts including math, easy switching of the internal
encoding (including Unicode), and the user-friendly
macros OPmac.

In the default configuration, CSplain remains a
gentle extension of plain TEX, backwards-compatible
with previous versions. The new possibilities are
easily accessed with \input and when they are used
it is no longer correct to talk of a gentle extension.
On the contrary, it is a strong competitor to all other
macro systems based on TEX, even very large ones.
CSplain has advantages in its simplicity, effective-
ness, and ease of usage.

The new CSplain is available through CTAN and
the usual TEX distributions, and its home on the web
is http://petr.olsak.net/csplain-e.html.

Introduction

In October 2012, a discussion on the cstex@ mailing
list was held about the configuration of the input
encoding of CSplain. It was shown that for many
years CSplain used the wrong default input encoding
on MS Windows: ISO 8859-2, which is foreign on
this operating system. I was surprised.

Our old decision was that the input encoding
of CSplain was to be set depending on the operating
system in use. This is similar to the ASCII versus
EBCDIC encodings on old systems, where TEX did
reencoding of its input depending on its environ-
ment. It is essential that when the Czech and Slo-
vak characters in the source file are shown in text
editor correctly then CSplain prints them correctly
too. On the other hand, when we see bad charac-
ters in text editor, we cannot wonder that CSplain
produces broken output. Unfortunately, this idea
was valid ten years ago, but not so much today.
Nowadays there are text editors with special intel-
ligence — they try to autodetect the encoding and
they try to show anything properly. In such an en-
vironment, the above rule makes no sense. These

TUGboat, Volume 34 (2013), No. 1 901

modern editors handle the UTF-8 encoding, so we
decided that this will be implicitly set as the input
encoding of CSplain on all systems.

The conversion between UTF-8 input codes and
the internal encoding (i.e. font encoding and hy-
phenation pattern encoding) must be done straight-
forwardly at the input processor level. No active
characters are allowed for this purpose. When we
do

\def\test#1#2%
{the first character is #1, second is #2}

\test čř

then we expect the output “the first character is č,
second is ř”. Therefore, CSplain needs to activate
the encTEX extension in 8-bit TEX engines (TEX,
pdfTEX). The 16-bit TEX engines are more straight-
forwardly used for this case.

Format generation

The following lines show various methods to gener-
ate the format files csplain and pdfcsplain. The
implicit output (DVI and PDF) is set by the name of
generated format (csplain sets DVI output, while
pdfcsplain sets PDF output).

pdftex -ini -enc "\let\enc=u \input csplain.ini"
pdftex -jobname csplain -ini -etex \

-enc csplain-utf8.ini
pdftex -jobname pdfcsplain -ini -etex \

-enc csplain-utf8.ini
xetex -jobname pdfcsplain -etex -ini csplain.ini
luatex -jobname pdfcsplain -ini csplain.ini

CSplain—basic features

The basic behavior of CSplain is similar to plain
TEX. The only difference is that the default \hsize
and \vsize are set to create one inch margins in A4
paper format, not letter format. One can consider
that the second difference is the presence of macros
unknown in plain TEX:

\chyph % Czech hyphenation patterns and
% \frenschpacing initialised.

\shyph % Slovak hyphenation patterns and
% \frenschpacing initialised.

\csaccents % redefines \’, \v, \^, \‘, \" a \r,
% they expand to given internal slot.

You can return to the default behavior with:

\ehyph % US hyphenation patterns and
% \nonfrenchspacing.

\cmaccents % \’, \v etc. expand to
% \accent primitive.

The implicit internal encoding and the implicit
fonts are set to CSencoding/CS fonts in CSplain. It

New CSplain of 2012

means that (for example) the font csr10 is preloaded
as \tenrm instead of cmr10. These cs* fonts keep
the 7-bit half of the encoding table the same as their
cm* counterparts, while Czech and Slovak letters are
placed in the second part of encoding table, ordered
by ISO-8859-2.
CSplain defines control sequences which corre-

spond to the special glyphs used in CS fonts.

\clqq % left Czech double quote.
\crqq % right Czech double quote.
\flqq % left French double quote

% (used at right side in Czech).
\frqq % right French double quote

% (used at left side in Czech).
\promile % per mille character.
\uv % quotation macro: \uv{text} gives

% \clqq text\crqq.
\ogonek a % Polish a-ogonek

% (composed from components)

UTF-8 input encoding when encTEX is used

You can recognize the UTF-8 encoded CSplain with
encTEX by the message:

The format: csplain <Nov. 2012>.
The cs-fonts are preloaded and A4 size

implicitly defined.
The utf8->iso8859-2 re-encoding of Czech+Slovak

alphabet activated by encTeX

Many thousands of character codes can occur
in UTF-8 input, but by default, CSplain is able to
read only characters from ASCII and the Czech and
Slovak alphabets:

Á á Ä ä Č č Ď ď É é Ě ě Í ı́ Ĺ ĺ Ľ ľ Ň ň Ó ó Ö ö Ô
ô Ŕ ŕ Ř ř Š š Ť ť Ú ú Ů ů Ü ü Ý ý Ž ž.

These characters are mapped by encTEX to one
byte (one slot) corresponding to the internal encod-
ing. Moreover, the characters known from plain TEX
are mapped to the control sequences:

plain: \ss ß, \l, \L, \ae æ, \oe œ, \AE Æ, \OE Œ,
\o ø, \O Ø, \i ı, \j , \aa å, \AA Å,
\S §, \P ¶, \copyright c©, \dots . . . ,
\dag †, \ddag ‡.

csplain: \clqq, \crqq, \flqq, \frqq, \promile.

EncTEX is able to map the UTF-8 code to the
internal 8-bit slot or to the control sequence. When
such a mapped control sequence or internal 8-bit
slot is processed by the \write primitive, it is con-
verted back to the UTF-8 code. So, the 8-bit TEX
engine can handle an unlimited number of UTF-8
codes. But by default, only the characters men-
tioned above are properly processed by CSplain. If

902 TUGboat, Volume 34 (2013), No. 1

another UTF-8 code occurs in the input, CSplain re-
ports the following warning (the Ñ character is used
in this example):

WARNING: unknown UTF-8 code: ‘~N = ^^c3^^91’
(line: 42)

and users can add their own mapping and definition
of such a character. For example:

\mubyte\Ntilde ^^c3^^91\endmubyte
% \UTF-8 code mapped to \Ntilde.

\def\Ntilde{\~N} % The \Ntilde is defined.

Now CSplain processes the Ñ character properly
even though it is not included in the Czech or Slovak
alphabets.

The distribution enctex.tar.gz contains these
two files:

utf8lat1.tex % Latin1 Supplement U+0080-U+00FF
utf8lata.tex % Latin Extended-A U+0100-U+017F

These files do the mapping of the abovemen-
tioned UTF-8 codes by encTEX and provide the def-
initions for the mapped control sequences. You can
\input them to your document and/or create anal-
ogous files for your purposes.

Internal encoding

The internal encoding means the encoding of the
fonts and hyphenation patterns that are used. By
default, CSplain sets the internal encoding to the CS -
encoding (as mentioned above). But you can change
this encoding via \input at begin of our document.
There are two possibilities:

\input t1code % the T1 internal encoding is set
\input ucode % the Unicode internal encoding

% is set (in 16-bit TeX engines)

These \input files do the following:

• Set the right \uccode/\lccode.
• Reset the \chyph and \shyph macros, so they

choose the hyphenation patterns in proper en-
coding.
• Remap the UTF-8 codes to the new slots, if

encTEX is used.
• Redefine some character-like control sequences

(\ss, etc.).
• Redefine \csaccents, so \’x, \v x, etc. ex-

pand to the right slots.

As you can see, these files don’t reload the fonts
with the proper encoding. This has to be done
with the next \input in your document, for example
\input lmfonts or ctimes or cs-pagella.

CSplain preloads the Czech and Slovak hyphen-
ation patterns in CS-encoding, in T1 encoding and

Petr Oľsák

(if a 16-bit TEX engine is detected) in Unicode. The
only thing the user need be concerned with is ini-
tializing the hyphenation patterns with \chyph or
\shyph after the \input t1code or \input ucode

is done. The section below “More languages” de-
scribes how CSplain is able to load hyphenation pat-
terns of another languages.

Font loading

The CSplain package provides the following ready-
to-use files which load the given font family (typi-
cally \rm, \it, \bf and \bi):

lmfonts % Latin Modern fonts
ctimes % Times
chelvet % Helvetica
cavantga % AvantGarde
cncent % NewCentury
cpalatin % Palatino
cs-termes % TeX-Gyre Termes (Times)
cs-heros % TeX-Gyre Heros (Helvetica)
cs-cursor % TeX-Gyre Cursor (Courier)
cs-adventor % TeX-Gyre Adventor (AvantGarde)
cs-bonum % TeX-Gyre Bonum (Bookman)
cs-pagella % TeX-Gyre Pagella (Palatino)
cs-schola % TeX-Gyre Schola (NewCentury)
cs-antt % Antykwa Torunska
cs-polta % Antykwa Poltawskiego
cs-bera % Bera
cs-arev % ArevSans
cs-charter % Charter

All of these font files include the switch to load
the correct font for the chosen internal encoding (CS -
encoding or T1 or Unicode). These font files simply
load the fonts for the needed variants with the \font
primitive, redefining the control sequences \tenrm,
\tenit, \tenbf, \tenbi and \tentt. Again, users
can easily create their own additional font files by
using these as a model.

The font loading files do not deal with the var-
ious sizes of the fonts, because they do not need to.
That is the subject of the next section.

Font handling

CSplain introduces a simple font-resizing principle.
The main credo is: “power is in simplicity”. That
is the reason why I don’t use NFSS, for example.

The command \font\foo=something declares
font selector \foo which select the font something.
The terminology font selector in this section is used
only for selectors declared by \font primitive. This
means that \bf (for example) isn’t a font selector.
It is a macro.
CSplain defines the following macros for font

size handling.

TUGboat, Volume 34 (2013), No. 1 903

• \resizefont\foo resizes the font represented
by font selector \foo. More precisely, it de-
clares (locally) \foo as the same font but with
the size given in the macro \sizespec. The
\sizespec macro can have the form at〈dimen〉
or scale〈factor〉.
• \regfont\foo registers the font selector \foo

as a resizable font. By default CSplain declares
the following selectors with \regfont: \tenrm,
\tenit, \tenbf, \tenbi and \tentt. Users can
declare more selectors.
• \resizeall resizes (locally) all registered font

selectors to the size given by the \sizespec

macro.
• \letfont \foo=\bar at〈dimen〉 or \letfont

\foo=\bar scaled〈factor〉 declares a new font
selector \foo as the same font as \bar with the
given size. The \bar font selector is unchanged.

Here’s an example:

\font\zapfchan=pzcmi8z \regfont\zapfchan
\def\sizespec{at13.5pt} \resizeall \tenrm
\baselineskip=15pt

Here is the typesetting at size 13.5pt
including {\it italics}, {\bf bold} and
including the {\zapfchan Zapf Chancery font}.

\def\sizespec{at8pt} \resizeall \tenrm
Now all the typesetting is at the 8pt size.

Another example uses the font loading files:

\input chelvet % \tenrm, \tenit, etc. is now
% the Helvetica family.

\letfont\titlefont = \tenbf at14.4pt
% \titlefont is for titles:
% Helvetica Bold at14,4pt.

\input ctimes % \tenrm, etc. is Times Roman.
\def\sizespec{at11pt}\resizeall \tenrm

% Normal text will be typeset
% by Times Roman at11pt.

\def\small{\def\sizespec{at9pt}\resizeall \tenrm}
% The \small macro switches the whole family
% of Times Roman to the 9pt size,
% e.g., for footnotes.

Note #1. The font selectors \tenrm, \tenit,
etc. have the subword ten in its name but this is
only for historical reasons. The current meaning of
these selectors can be fonts at an arbitrary size.

Note #2. These macros do not solve the resiz-
ing of math fonts. This is the subject of the following
section.

Note #3. The selection of the proper design
size (cmr5 or cmr7 or . . . or cmr17) is not solved by
default. But the math font macros solve this and
you can simply redefine \resizefont so that the
proper design size is selected.

New CSplain of 2012

Math fonts

The CSplain package provides two macro files for
math fonts: ams-math.tex and tx-math.tex. The
first one loads AMS fonts and declares hundreds of
math symbols and operators like AMSTEX. The
second macro file does the same but loads the tx

fonts which are visually compatible with Times Ro-
man and similar designs.

By default, neither of these macro files are read.
But you can load ams-math.tex explicitly, or the
proper macro file is loaded implicitly with \input

ctimes, lmfonts, etc.
These files provide the macro:

\setmathsizes[〈text〉/〈script〉/〈scriptscript〉]

in which the user can set the sizes of basics text,
script and superscript. The parameters have to be
written without unit (the unit pt is used). For ex-
ample \setmathsizes[10/7/5] is the default from
plain TEX.

The following math alphabets are available af-
ter ams-math.tex or tx-math.tex is loaded:

\mit % mathematical variables
\rm, \it % text fonts in math
\bf, \bi % bold sans fonts (might be

% different than text fonts)
\cal % normal calligraphic
\script % script
\frak % fracture
\bbchar % double stroked letters

The ams-math.tex defines the \regtfm macro
to declare the mapping from a desired size to the
list of design sizes represented by names of the met-
ric files. For more information about this, see the
file ams-math.tex, where \regtfm is defined and
used. Once this mapping is set, you can redefine
the internal subpart of the \resizefont macro in
the following way:

\def\resizefontskipat#1 #2\relax
{\whichtfm{#1} \sizespec\relax}

Now \resizefont chooses the right metrics if
\sizespec and \dgsize are properly set. This com-
plexity can be hidden from the user, if he or she
uses the \typosize and \typoscale macros from
OPmac.

The following example shows how to set the font
for a title that includes math formulas:

\def\titlefont{\def{at14pt}\resizefont\tenbf
\tenbf \setmathsizes[14/9.8/7]\boldmath}

\def\title#1\par{\centerline{\titlefont #1}}

\title More about $\int_x^\infty f(t){\rm d}t$

904 TUGboat, Volume 34 (2013), No. 1

The \boldmath command selects the alterna-
tive set of all math families more compatible with
bold fonts usually used in titles.

Unicode fonts

Historically, CSplain worked with 8-bit TEX engines
where Unicode fonts are impossible. So, all the font
handling mentioned so far are primarily intended
for 8-bit fonts. The Unicode support for text fonts
in CSplain is only experimental, and Unicode math
isn’t solved in CSplain at all.

The 16-bit TEX engines expect the UTF-8 in-
put encoding and work in Unicode internally. So
T1-encoded fonts cannot be used because Czech and
Slovak alphabets are unfortunately not in the inter-
section of T1 and Unicode encodings. On the other
hand, colleagues writing in German or French can
use T1-encoded 8-bit fonts in 16-bit TEX engines
because their whole alphabet is in this intersection.

X ETEX has a font loader linked with system li-
braries and it extends the syntax of the \font prim-
itive. For example:

\font\foo="[〈filename〉]:〈fontfeatures〉" 〈sizespec〉

where 〈filename〉 is the file name without the .otf

suffix and the 〈sizespec〉 is at〈dimen〉 or scaled

〈factor〉. The 〈fontfeatures〉 are font modifiers sep-
arated by semicolon. You have to know which fea-
tures are implemented in the font and which in the
font loader. For example, X ETEX’s font loader pro-
vides the feature mapping=tex-text which activates
the usual TEX ligatures like --→ –. The normal lig-
atures (e.g., ‘fi’) are activated implicitly.

On the other hand, LuaTEX implements its ex-
tension of the font loader by Lua code. I have ex-
tracted the core of this code (from luaotfload.sty)
for CSplain, in a file luafonts.tex. Its stability
can’t be guaranteed because the Lua functions from
the LuaTEX distribution are called, and they may
change in the future. If LuaTEX is being used, the
files lmfonts.tex, cs-termes.tex, cs-heros.tex,
etc. input luafonts.tex before the first usage of the
extended \font primitive.

The extension of the \font primitive seems to
have the same syntax in XeTEX and LuaTEX. But,
unfortunately, the font features are different. By de-
fault, no ligatures are activated in Unicode fonts in
LuaTEX. Users must use script=latn to activate
the fi-ligatures and +tlig to activate the TEX spe-
cial ligatures. Users can define the \fontfeatures

macro for special needs of features. If this macro
isn’t defined, CSplain’s font-loading macros make
the following default:

Petr Oľsák

\def\fontfeatures
{mapping=tex-text;script=latn;+tlig}

which works in both X ETEX and LuaTEX.

More languages

The following hyphenation patterns are preloaded in
CSplain by default:

• \USenglish=0 . . . default US hyphenation
patterns from plain TEX, ASCII encoding.

• \czILtwo=5 . . . Czech patterns, ISO-8859-2.
• \skILtwo=6 . . . Slovak patterns, ISO-8859-2.
• \czCork=15 . . . Czech patterns, T1 encoding.
• \skCork=16 . . . Slovak patterns, T1 encoding.
• \czUnicode=115 . . . Czech patterns, Unicode

(only for 16-bit TEX engines).
• \skUnicode=116 . . . Slovak patterns, Unicode

(only for 16-bit TEX engine).

Hyphenation patterns are selected with \uslang,
\czlang and \sklang, which are equivalent to the
old selectors \ehyph, \chyph and \shyph. The prop-
er encoding is used if the command \input t1code

or \input ucode precedes the patterns selector.
Since 2012, CSplain is able to load hyphenation

patterns of other languages (ca. 50 languages). If the
patterns use a subset of T1 encoding, they can be
loaded in T1 (alias Cork) and/or in Unicode. Oth-
erwise, only the Unicode encoding for the patterns
is allowed. Unicode patterns can be loaded only in
16-bit TEX engines.

The loading of extra hyphenation patterns can
be done on the command line when format is gen-
erated. Examples follow:

TUGboat, Volume 34 (2013), No. 1 905

pdftex -ini -enc \
"\let\plCork=y \let\enc=u \input csplain.ini"

pdftex -ini -enc "\let\allpatterns=y
\let\enc=u \input csplain.ini"

luatex -jobname pdfcsplain -ini \
"\let\ruUnicode=y \input csplain.ini"

luatex -jobname pdfcsplain -ini \
"\let\allpatterns=y \input csplain.ini"

The first line adds Polish hyphenation patterns in
the T1 encoding to CSplain. The second line loads
all available hyphenation patterns for 8-bit TEX en-
gines (i.e. Czech&Slovak in ISO-8859-2 and T1, and
others, ca. 30 languages, in T1). The third line loads
the Russian hyphenation patterns in Unicode. Fi-
nally, the last line loads all available hyphenation
patterns (in T1 and in Unicode). The pattern selec-
tors have the form \〈twoletters〉lang, for example
\pllang, \delang, \itlang, \rulang etc. Please
read the hyphen.lan file for more information.

The OPmac macro package

The OPmac (Olsak’s Plain TEXmacros) package is
part of CSplain. It provides more LATEX-like features
in plain TEX: font size changing, automatic creation
of tables of contents and indexes, working with bib-
liography databases, tables, references including hy-
perlinks options, etc. For more information about
this macro package, see the companion article in this
same issue of TUGboat.

� Petr Oľsák
Czech Technical University
Prague, Czech Republic
http://petr.olsak.net

New CSplain of 2012

